Skip to main content
Log in

Impact of mild and harsh conditions of formic acid-based organosolv pretreatment on biomass fractionation of sugarcane tops

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study puts emphasis on the impact of formic acid-based organosolv (FAOS) pretreatment on sugarcane tops (SCT) for biomass fractionation (cellulose, hemicellulose, and lignin) under mild and harsh pretreatment conditions. The cellulose, hemicellulose, and lignin contents of SCT were 35.0 ± 0.4%, 30.3 ± 0.5%, and 17.0 ± 0.7%, respectively. One hundred twenty-five degree Celsius pretreatment temperature, 90 min pretreatment time, and 1:7.5 solid to liquid ratio were selected as the best conditions for FAOS pretreatment of SCT. Under these conditions, equivalent to 392 ± 4 kg pretreated SCT was obtained from 1 tonne of moisture-free basis SCT, which contained 296 ± 3 kg cellulose, 11.1 ± 0.5 kg hemicellulose, 15.7 ± 0.3 kg lignin, 8.00 ± 0.2 kg extractives, and 53.4 ± 0.9 kg ash. Pretreatment temperature and time higher than the best-selected values (125 °C and 90 min) adversely affected SCT fractionation due to damage of fiber surface, high lignin content in pSCT, and lower solids recovery in the hydrolyzate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pandey A, Biswas S, Sukumaran RK, Kaushik N (2009) Study on availability of Indian biomass resources for exploitation: a report based on a nation-wise survey. TIFAC, New Delhi, 105

  2. Hassuani SJ, Da Silva JEAR, Neves JLM (2005) Sugarcane trash recovery alternatives for power generation. Zuckerind 130:781–786

    Google Scholar 

  3. Franco HCJ, Magalhães PSG, Cavalett O, Cardoso TF, Braunbeck OA, Bonomi A, Trivelin PCO (2011) How much trash to removal from sugarcane field to produce bioenergy. Proceedings Brazilian BioEnergy Science and Technology; Campos do Jordão

  4. Maican E, Coz A, Ferdeş M (2015) Continuous Pretreatment Process for Bioethanol Production. In 4th International Conference on Thermal Equipment, Renewable Energy and Rural Development. Romania 35:287

  5. Galbe M, Sassner P, Wingren A, Zacchi G (2007) Process engineering economics of bioethanol production. In Biofuels. Springer, Berlin, Heidelberg, pp 303–327. https://doi.org/10.1007/10_2007_063

  6. Sindhu R, Kuttiraja M, Binod P, Janu KU, Sukumaran RK, Pandey A (2011) Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresour Technol 102(23):10915–10921. https://doi.org/10.1016/j.biortech.2011.09.066

    Article  Google Scholar 

  7. Srinorakutara T, Suthkamol S, Butivate E, Panphan V, Boonvitthya N (2014) Optimization on pretreatment and enzymatic hydrolysis of sugarcane trash for ethanol production. J Food Sci Eng 4:148–154

    Google Scholar 

  8. Saska M, Gray M, (2006). Pretreatment of sugarcane leaves and bagasse pith with limeimpregnation and steam explosion for enzymatic conversion to fermentable sugars. 28th Symposium on Biotechnology for Fuels and Chemicals, Nashville, T N, April 30-May 3, p 1-13

  9. Sindhu R, Kuttiraja M, Binod P, Preeti VE, Sandhya SV, Vani S, Sukumaran RK, Pandey A (2012) Surfactant – assisted acid pretreatment of sugarcane tops for bioethanol production. Appl Biochem Biotechnol 167(6):1513–1526. https://doi.org/10.1007/s12010-012-9557-3

    Article  Google Scholar 

  10. Sindhu R, Kuttiraja M, Preeti VE, Vani S, Sukumaran RK, Binod P (2013) A novel surfactant-assisted ultrasound pretreatment of sugarcane tops for improved enzymatic release of sugars. Bioresour Technol 135:67–72. https://doi.org/10.1016/j.biortech.2012.09.050

    Article  Google Scholar 

  11. Krishnan C, Sousa LC, Jin M, Chang L, Dale BE, Balan V (2010) Alkali – based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng 107(3):441–450. https://doi.org/10.1002/bit.22824

    Article  Google Scholar 

  12. Singh P, Suman A, Tiwari P, Arya N, Gaur A, Shrivastava AK (2008) Biological pretreatment of sugarcane trash for its conversion for fermentable sugars. World J Microbiol Biotechnol 24(5):667–673. https://doi.org/10.1007/s11274-007-9522-4

    Article  Google Scholar 

  13. Maurya DP, Vats S, Rai S, Negi S (2013) Optimization of enzymatic saccharification of microwave pretreated sugarcane tops through response surface methodology for biofuel. Indian J Exp Biol 51:992–996

    Google Scholar 

  14. Raghavi S, Sindhu R, Binod P, Gnansounou E, Pandey A (2016) Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash. Bioresour Technol 199:202–210. https://doi.org/10.1016/j.biortech.2015.08.062

    Article  Google Scholar 

  15. Chotirotsukon C, Raita M, Champreda V, Laosiripojana N (2018) Optimization of sugarcane trash fractionation process using aqueous glycerol. 7th International Conference on Sustainable Energy and Environment (SEE 2018): Technology & Innovation for Global Energy Revolution 28–30 November 2018, Bangkok, Thailand, p36–39

  16. Chotirotsukon C, Raita M, Champreda V, Laosiripojana N (2019) Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification. Ind Crop Prod 141:111753. https://doi.org/10.1016/j.indcrop.2019.111753

    Article  Google Scholar 

  17. Paszner L, Behera NC (1985) Beating behaviour and sheet strength development of coniferous organosolv fibers. Holzforschung 39:51–61. https://doi.org/10.1515/hfsg.1985.39.1.51

    Article  Google Scholar 

  18. Xu J, Thomsen MH, Thomsen AB (2009) Pretreatment on corn stover with low concentration of formic acid. J Microbiol Biotechnol 19(8):845–850. https://doi.org/10.4014/jmb.0809.514

    Article  Google Scholar 

  19. Xu F, Liu CF, Geng ZC, Sun JX, Sun RC, Hei BH, Lin L, Wu SB, Je J (2006) Characterisation of degraded organosolv hemicelluloses from wheat straw. Polym Degrad Stab 91(8):1880–1886. https://doi.org/10.1016/j.polymdegradstab.2005.11.002

    Article  Google Scholar 

  20. Dong L, Wu R, Zhao X, Liu D (2017) Phenomenological modeling and evaluation of formic acid pretreatment of wheat straw with an extended combined severity factor for biomass fractionation and enzymatic saccharification to produce bioethanol. J Taiwan Inst Chem Eng 81:140–149. https://doi.org/10.1016/j.jtice.2017.09.038

    Article  Google Scholar 

  21. Canilha L, Chandel AK, Suzane dos Santos Milessi T, Antunes FAF, Luiz da Costa Freitas W, das Graças Almeida Felipe M, da Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification and ethanol fermentation. Biomed Res Int 2012:1–15. https://doi.org/10.1155/2012/989572

    Article  Google Scholar 

  22. Snelders J, Dornez E, Benjelloun-Mlayah B, Huijgen WJ, de Wild PJ, Gosselink RJ, Gerritsma J, Courtin CM (2014) Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresour Technol 156:275–282. https://doi.org/10.1016/j.biortech.2014.01.069

    Article  Google Scholar 

  23. Zhang Z, Harrison MD, Rackemann DW, Doherty WO, O’Hara IM (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18(2):360–381. https://doi.org/10.1039/c5gc02034d

    Article  Google Scholar 

  24. Wise LB, Murphy M, D’Addieco AA (1946) Method of determining holocellulose in wood. Paper Trade J 122(2):35–39

    Google Scholar 

  25. Updegraff DM (1969) Semimicro determination of cellulose inbiological materials. Anal Biochem 32(3):420–424. https://doi.org/10.1016/s0003-2697(69)80009-6

    Article  Google Scholar 

  26. Deschatelets L, Ernest KC (1986) A simple pentose assay for biomass conversion studies. Appl Microbiol Biotechnol 24(5):379–385. https://doi.org/10.1007/bf00294594

    Article  Google Scholar 

  27. Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): comparison between measurement techniques. Lenzinger Berichte 89(1):118–131

    Google Scholar 

  28. Segal LGJMA, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  29. Hult EL, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellul. 10(2):103–110

    Article  Google Scholar 

  30. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellul. 12(6):563–576. https://doi.org/10.1007/s10570-005-9001-8

    Article  Google Scholar 

  31. Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918:98–100. http://eudml.org/doc/59018

    Google Scholar 

  32. Han G, Huan S, Han J, Zhang Z, Wu Q (2014) Effect of acid hydrolysis conditions on the properties of cellulose nanoparticle-reinforced polymethylmethacrylate composites. Mater. 7(1):16–29. https://doi.org/10.3390/ma7010016

    Article  Google Scholar 

  33. Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II A new infrared ratio for estimation of crystallinity in cellulose I and II. J Appl Polym Sci 8(3):1311–1324. https://doi.org/10.1002/app.1964.070080323

    Article  Google Scholar 

  34. Struszczyk H (1986) Modification of lignins III. Reaction of lignosulfonates with chlorophosphazenes. J Macromol Sci A 23(8):973–992. https://doi.org/10.1080/00222338608081105

    Article  Google Scholar 

  35. Pimentel GC, Sederholm CH (1956) Correlation of infrared stretching frequencies and hydrogen bond distances in crystals. J Chem Phys 24(4):639–641. https://doi.org/10.1063/1.1742588

    Article  Google Scholar 

  36. da Silva ASA, Inoue H, Endo T, Yano S, Bon EP (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101(19):7402–7409. https://doi.org/10.1016/j.biortech.2010.05.008

    Article  Google Scholar 

  37. Luz SM, Gonçalves AR, Leão AL, Ferrão P, Rocha GJ (2010) Thermal properties of polypropylene composites reinforced with different vegetable fibers. In Adv Mater Res 123:1199–1202. https://doi.org/10.4028/www.scientific.net/amr.123-125.1199

    Article  Google Scholar 

  38. Costa SM, Mazzola PG, Silva JC, Pahl R, Pessoa A Jr, Costa SA (2013) Use of sugar cane straw as a source of cellulose for textile fiber production. Ind Crop Prod 42:189–194. https://doi.org/10.1016/j.indcrop.2012.05.028

    Article  Google Scholar 

  39. Gómez EO, Torres R, De Souza G, Jackson G (2014) Sugarcane trash a feedstock for second generation processes. In: Blücher E (ed) Sugarcane bioethanol-R&D for productivity and sustainability, São Paulo, Editora Edgard Blücher, pp 637–660. https://doi.org/10.5151/blucheroa-sugarcane-sugarcanebioethanol_56

  40. Franco HCJ, Pimenta MTB, Carvalho JLN, Magalhães PSG, Rossell CEV, Braunbeck OA, Vitti AC, Kölln OT, Rossi Neto J (2013) Assessment of sugarcane trash for agronomic and energy purposes in Brazil. Sci Agric 70(5):305–312. https://doi.org/10.1590/s0103-90162013000500004

    Article  Google Scholar 

  41. Tu Q, Fu S, Zhan H, Chai X, Lucia LA (2008) Kinetic modeling of formic acid pulping of bagasse. J Agric Food Chem 56(9):3097–3101. https://doi.org/10.1021/jf0729659

    Article  Google Scholar 

  42. Vasquez D, Lage MA, Parajó JC, Vázquez G (1992) Fractionation of Eucalyptus wood in acetic acid media. Bioresour Technol 40(2):131–136. https://doi.org/10.1016/0960-8524(92)90198-7

    Article  Google Scholar 

  43. Abad S, Alonso JL, Santos V, Parajó JC (1997) Furfural from wood in catalyzed acetic acid media: a mathematical assessment. Bioresour Technol 62(3):115–122. https://doi.org/10.1016/s0960-8524(97)00076-x

    Article  Google Scholar 

  44. Dapía S, Santos V, Parajó JC (2002) Study of formic acid as an agent for biomass fractionation. Biomass Bioenergy 22(3):213–221. https://doi.org/10.1016/s0961-9534(01)00073-3

    Article  Google Scholar 

  45. Pasquini D, Pimenta MTB, Ferreira LH, da Silva Curvelo AA (2005) Extraction of lignin from sugar cane bagasse and Pinus taeda wood chips using ethanol–water mixtures and carbon dioxide at high pressures. J Supercrit Fluids 36(1):31–39. https://doi.org/10.1016/j.supflu.2005.03.004

    Article  Google Scholar 

  46. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):1–10. https://doi.org/10.1186/1754-6834-3-10

    Article  Google Scholar 

  47. Trache D, Donnot A, Khimeche K, Benelmir R, Brosse N (2014) Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from alfa fibres. Carbohydr Polym 104:223–230. https://doi.org/10.1016/j.carbpol.2014.01.058

    Article  Google Scholar 

  48. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih S (ed) Fourier transform-materials analysis. InTech, pp 45–68. https://doi.org/10.5772/35482

  49. Poletto M, Ornaghi H, Zattera A (2014) Native cellulose: structure, characterization and thermal properties. Mater. 7(9):6105–6119. https://doi.org/10.3390/ma7096105

    Article  Google Scholar 

  50. Yu G, Li B, Liu C, Zhang Y, Wang H, Mu X (2013) Fractionation of the main components of corn stover by formic acid and enzymatic saccharification of solid residue. Ind Crop Prod 50:750–757. https://doi.org/10.1016/j.indcrop.2013.08.053

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, Avantha Centre for Industrial Research and Development (ACIRD), Yamuna Nagar, for providing the infrastructure to carry out this research work.

Funding

The authors are grateful to the Department of Biotechnology, Government of India, for providing the Research Grant (BT/PR20671/PBD/26/528/2016) to carry out this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishi Kant Bhardwaj.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, P., Gupta, A., Bhardwaj, N.K. et al. Impact of mild and harsh conditions of formic acid-based organosolv pretreatment on biomass fractionation of sugarcane tops. Biomass Conv. Bioref. 11, 2027–2040 (2021). https://doi.org/10.1007/s13399-020-00629-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00629-w

Keywords

Navigation