Skip to main content
Log in

Chemical Pretreatment of Sunflower Straw Biomass: The Effect on Chemical Composition and Structural Changes

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, various pretreatment methods, such as thermal (24 h at 80 °C; 1 h at 120 °C), alkaline (2–20 g ΝaΟΗ/100 g TS, 24 h at 80 °C) and acid (2–20 g Η2SO4/100 g TS, 1 h at 120 οC; 2–20 g Η3PO4/100 g TS, 1 h at 120 °C; 2–20 g HCl/100 g TS, 1 h at 120 °C), were applied on sunflower straw biomass and the effect of each pretreatment method on the fractionation of the lignocellulosic content was evaluated. Experiments showed that pretreatment with the acids led to higher hemicellulose solubilization, while lignin degradation was achieved when the sunflower was treated with NaOH. Higher acids concentration led to higher solubilization of hemicellulose and higher concentrations of released furaldehydes (5-hydroxymethylfurfural and furfural) and aliphatic acids (i.e. formic and acetic acid). On the contrary, the higher the NaOH concentration, the higher was the phenolics concentration observed. Scanning electron microscopy images revealed a change in morphology after different pretreatment methods, compared to the raw substrate. Thus, disruption of the outer layers and removal of mass from the initial connected structure were observed, for all pretreated feedstocks. Complete analysis of the liquid fractions obtained after pretreatment, led to the estimation of the ratio of sum of soluble sugars concentration to the sum of inhibitors concentration (Σ(soluble sugars)/Σ(inhibitors)), which characterizes the fermentability of the sunflower straw hydrolysates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. European Commission Eurostat: http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search database (2010). Accessed 10 Feb 2010

  2. FAOSTAT: http://faostat.fao.org (2013). Accessed 05 Mar 2013

  3. Punda, I.: Investment Centre Division, Sunflower Crude and Refined Oils. Agribusiness Handbook, Italy (2010)

    Google Scholar 

  4. Antonopoulou, G., Alexandropoulou, M., Lyberatos, G.: The effect of thermal, chemical and enzymatic pretreatment on saccharification and methane generation from sunflower straws. In: Proceedings Venice 2010, third international symposium on energy from biomass and waste, Venice, Italy 8–11 November (2010)

  5. Marechal, V., Rigal, L.: Characterization of by-products of sunflower culture- commercial applications for stalks and heads. Ind. Crops Prod. 10, 185–200 (1999)

    Article  Google Scholar 

  6. Monlau, F., Barakat, A., Trably, E., Dumas, C., Steyer, J.-P., Carrere, H.: Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit. Rev. Environ. Sci. Technol. 43, 260–322 (2013)

    Article  Google Scholar 

  7. Saha, B.C., Yoshida, T., Cotta, M.A., Sonomoto, K.: Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind. Crop. Prod. 44, 367–372 (2013)

    Article  Google Scholar 

  8. Caparros, S., Ariza, J., Lopez, F., Nacimiento, J.A., Garrote, G., Jimenez, L.: Hydrothermal treatment and ethanol pulping of sunflower stalks. Bioresour. Technol. 99, 1368–1372 (2008)

    Article  Google Scholar 

  9. Diaz, M.J., Cara, C., Ruiz, E., Perez-Bonilla, M., Castro, E.: Hydrothermal pretreatment and enzymatic hydrolysis of sunflower stalks. Fuel 90, 3225–3229 (2011)

    Article  Google Scholar 

  10. Ruiz, E., Cara, C., Manzanares, P., Ballesteros, M., Castro, E.: Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme Microb. Technol. 42, 160–166 (2008)

    Article  Google Scholar 

  11. Cao, S., Pu, Y., Studer, M., Wyman, C., Ragauskas, A.J.: Chemical transformations of populus trichocarpa during dilute acid pretreatment. RSC Adv. 2, 10925–10936 (2012)

    Article  Google Scholar 

  12. Galbe, M., Zacchi, G.: Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46, 70–78 (2012)

    Article  Google Scholar 

  13. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6), 673–686 (2005)

    Article  Google Scholar 

  14. Chandel, A.K., Singh, O.V., Narasu, M.L., Rao, L.V.: Bioconversion of Saccharum spontaneum (wild sugarcane) hemicellulosic hydrolysate into ethanol by mono and co-cultures of Pichia stipitis NCIM3498 and thermotolerant Saccharomyces cerevisiae-VS3. New Biotechnol. 28(6), 593–599 (2011)

    Article  Google Scholar 

  15. Zheng, Y., Lee, C., Yu, C., Cheng, Y.-S., Zhang, R., Jenkins, B.M., VanderGheynst, J.S.: Dilute acid pretreatment and fermentation of sugar beet pulp to ethanol. Appl. Energy 105, 1–7 (2013)

    Article  Google Scholar 

  16. Martinez, M.L., Sanchez, S., Bravo, V.: Production of xylitol and ethanol by Hansenula polymorpha from hydrolysates of sunflower stalks with phosphoric acid. Ind. Crop Prod. 40, 160–166 (2012)

    Article  Google Scholar 

  17. Marcotullio, G., Krisanti, E., Giuntoli, J., De Jong, W.: Selective production of hemicellulose-derived carbohydrates from wheat straw using dilute HCl or FeCl3 solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solid residues. Bioresour. Technol. 102, 5917–5923 (2011)

    Article  Google Scholar 

  18. Monlau, F., Sambusiti, C., Barakat, A., Quemeneur, M., Trably, E., Steyer, J.-P., Carrère, H.: Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol. Adv. 32, 934–951 (2014)

    Article  Google Scholar 

  19. Ruiz, E., Romero, I., Moya, M., Cara, C., Vidal, J.D., Castro, E.: Dilute sulfuric acid pretreatment of sunflower stalks for sugar production. Bioresour. Technol. 140, 292–298 (2013)

    Article  Google Scholar 

  20. Buranov, A.U., Mazza, G.: Lignin in straw of herbaceous crops. Ind. Crops Prod. 28, 237–259 (2008)

    Article  Google Scholar 

  21. Monlau, F., Aemig, Q., Barakat, A., Steyer, J.-P., Carrère, H.: Application of optimized alkaline pretreatment for enhancing the anaerobic digestion of different sunflower stalks varieties. Environ. Technol. 34(13–14), 2155–2162 (2013)

    Article  Google Scholar 

  22. Monlau, F., Barakat, Α., Steyer, J.-P., Carrère, H.: Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour. Technol. 120, 241–247 (2012)

    Article  Google Scholar 

  23. Antonopoulou, G., Lyberatos, G.: Effect of pretreatment of sweet sorghum biomass on methane generation. Waste Biomass Valoris. 4, 583–591 (2013)

    Article  Google Scholar 

  24. Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., Nilvebrant, N.-O.: The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24(3–4), 151–159 (1999)

    Article  Google Scholar 

  25. Panagiotopoulos, I.A., Bakker, R.R., de Vrije, T., Koukios, E.G.: Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds. Bioresour. Technol. 102, 11204–11211 (2011)

    Article  Google Scholar 

  26. Lee, J.Y., Ryu, H.J., Oh, K.K.: Acid-catalyzed hydrothermal severity on the fractionation of agricultural residues for xylose-rich hydrolyzates. Bioresour. Technol. 132, 84–90 (2013)

    Article  Google Scholar 

  27. Pedersen, M., Meyer, A.S.: Lignocellulose pretreatment severity—relating pH to biomatrix opening. New Biotechnol. 27(6), 739–750 (2010)

    Article  Google Scholar 

  28. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of extractives in biomass. Laboratory Analytical Procedure (LAP), NREL/TP-510-42619. National Renewable Energy Laboratory, Colorado (2008)

  29. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure (LAP), NREL/TP-510-42618. National Renewable Energy Laboratory, Colorado (2008)

  30. Joseffson, B.: Rapid spectrophotometric determination of total carbohydrates. In: Grasshoff, K., Ehrhardt, M., Kremling, K. (eds.) Methods of Seawater Analysis, pp. 340–342. Verlag Chemie GmbH, Berlin (1983)

    Google Scholar 

  31. APHA, AWWA, WPCF.: Standard methods for the examination of water and wastewater. Franson, M.A. (eds.) American Public Health Association, Washington (1995)

  32. Waterman, P.G., Mole, S.: Analysis of phenolic plant metabolites. In: Lawton, J.H., Likens, G.E. (eds.) Methods in Ecology. Blackwell Scientific Publications, Oxford (1994)

    Google Scholar 

  33. Chandel, A.K., da Silva, S.S., Carvalho, W., Singh, O.V.: Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J. Chem. Technol. Biotechnol. 87, 11–20 (2012)

    Article  Google Scholar 

  34. Guo, P., Mochidzuki, K., Cheng, W., Zhou, M., Gao, H., Zheng, D., Wang, X., Cui, Z.: Effects of different pretreatment strategies on corn stalk acidogenic fermentation using a microbial consortium. Bioresour. Technol. 102(16), 7526–7531 (2011)

    Article  Google Scholar 

  35. Nizami, A.-S., Korres, N.E., Murphy, J.D.: Review of the integrated process for the production of grass biomethane. Environ. Sci. Technol. 43(22), 8496–8508 (2009)

    Article  Google Scholar 

  36. Monlau, F., Trably, E., Barakat, A., Hamelin, J., Steyer, J.-P., Carrere, H.: Two-stage alkaline–enzymatic pretreatments to enhance biohydrogen production from sunflower stalks. Environ. Sci. Technol. 47, 12591–12599 (2013)

    Article  Google Scholar 

  37. Xie, S., Frost, J.P., Lawlor, P.G., Wu, G., Zhan, X.: Effects of thermo-chemical pre-treatment of grass silage on methane production by anaerobic digestion. Bioresour. Technol. 102(19), 8748–8755 (2011)

    Article  Google Scholar 

  38. Taherzadeh, M.J., Karimi, K.: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651 (2008)

    Article  Google Scholar 

  39. Alemdar, A., Sain, M.: Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour. Technol. 99, 1664–1671 (2008)

    Article  Google Scholar 

  40. Shafiei, M., Karimi, K., Taherzadeh, M.J.: Palm date fibers: analysis and enzymatic hydrolysis. Int. J. Mol. Sci. 11(11), 4285–4296 (2010)

    Article  Google Scholar 

  41. Rasmussen, H., Sorensen, H.R., Meyer, A.S.: Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugars reaction mechanisms. Carbohydr. Res. 385, 45–57 (2014)

    Article  Google Scholar 

  42. Almeida, J.R.M., Modig, T., Petersson, A., Hahn-Hägerdal, B., Liden, G., Gorwa-Grauslund, M.-F.: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82, 340–349 (2007)

    Article  Google Scholar 

  43. Du, B., Sharma, L.N., Becker, C., Chen, S.-F., Mowery, R.A., van Walsum, G.P., Chambliss, C.K.: Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol. Bioeng. 107(3), 430–440 (2010)

    Article  Google Scholar 

  44. Almeida, J.R.M., Bertilsson, M., Gorwa-Grauslund, M.F., Gorsich, S., Lidén, G.: Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 82(4), 625–638 (2009)

    Article  Google Scholar 

  45. de Vrije, T., Bakker, R.R., Budde, M.A.W., Lai, M.H., Mars, A.E., Claassen, P.A.M.: Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol. Biofuels 2, 12 (2009)

    Article  Google Scholar 

  46. Taherzadeh, M.J., Eklund, R., Gustafsson, L., Niklasson, C., Liden, G.: Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind. Eng. Chem. Res. 36, 4659–4665 (1997)

    Article  Google Scholar 

  47. Hierholtzer, A., Chatellard, L., Kierans, M., Akunna, J.C., Collier, P.J.: The impact and mode of action of phenolic compounds extracted from brown seaweed on mixed anaerobic microbial cultures. J. Appl. Microbiol. 114(4), 964–973 (2013)

    Article  Google Scholar 

  48. Klinke, H.B., Ahring, B.K., Schmidt, A.S., Thomsen, A.B.: Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour. Technol. 82(1), 15–26 (2002)

    Article  Google Scholar 

  49. Quémeneur, M., Hamelin, J., Barakat, A., Steyer, J.P., Carrere, H., Trably, E.: Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. Int. J. Hydrogen Energy 37(4), 3150–3159 (2012)

    Article  Google Scholar 

  50. Cao, G.-L., Ren, N.-Q., Wang, A.-J., Guo, W.-Q., Xu, J.-F., Liu, B.-F.: Effect of lignocellulose derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Int. J. Hydrogen Energy 35(24), 13475–13480 (2010)

    Article  Google Scholar 

  51. Ho, K.-L., Chen, Y.-Y., Lee, D.-J.: Biohydrogen production from cellobiose in phenol and cresol-containing medium using Clostridium sp. R1. Int. J. Hydrogen Energy 35, 10239–10244 (2010)

    Article  Google Scholar 

  52. Monlau, F., Aemig, Q., Trably, E., Hamelin, J., Steyer, J.-P., Carrere, H.: Specific inhibition of biohydrogen-producing Clostridium sp. after dilute-acid pretreatment of sunflower stalks. Int. J. Hydrogen Energy 38, 12273–12282 (2013)

    Article  Google Scholar 

  53. Hsu, T.-C., Guo, G.-L., Chen, W.-H., Hwang, W.-S.: Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour. Technol. 101, 4907–4913 (2010)

    Article  Google Scholar 

  54. Naseeruddin, S., Yadav, K.S., Sateesh, L., Manikyam, A., Desai, S., Venkateswar, R.L.: Selection of the best chemical pretreatment for lignocellulosic substrate Prosopis juliflora. Bioresour. Technol. 136, 542–549 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Greek General Secretariat for Research and Technology for the financial support of this work under “Supporting Postdoctoral Researchers Projects”—Pretreatment of lignocellulosic wastes for 2nd generation biofuels (POSTDOC_PE8(1756)) (post-doc fellowship of Dr. G. Antonopoulou).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia Antonopoulou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonopoulou, G., Dimitrellos, G., Beobide, A.S. et al. Chemical Pretreatment of Sunflower Straw Biomass: The Effect on Chemical Composition and Structural Changes. Waste Biomass Valor 6, 733–746 (2015). https://doi.org/10.1007/s12649-015-9388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9388-x

Keywords

Navigation