Skip to main content
Log in

Enhanced production of reducing sugars from paragrass using microwave-assisted alkaline pretreatment

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The main aims of this study were to examine the effectiveness of pretreatment methods for enhancing the conversion of Brachiara mutica (paragrass) lignocellulose into valuable reducing sugars by enzymatic hydrolysis. The pretreatments studied included alkali alone, microwave-assisted alkali, acid alone, and microwave-assisted acid. It was found that the application of microwave irradiation during alkaline pretreatment with an alkali-to-biomass ratio of 5% (w w−1) for 30 min at 120 °C markedly increased the total reducing sugar (TRS) yield after enzymatic hydrolysis from 316 mg g−1 dry pretreated paragrass without microwave irradiation to 750 mg g−1 dry pretreated paragrass with microwave irradiation. In particular, the microwave-assisted alkaline pretreatment markedly increased xylose production and enhanced the enzymatic digestibility of cellulose. The concentrations of 5-hydroxymethylfurfural (HMF) and furfural after the microwave-assisted pretreatment were well below 1.0 kg m−3, the suggested threshold concentration of furfurals where yeast inhibition may begin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Harmsen P, Huijgen W, Bermudez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass Biosynergy/Wageningen UR Food & Biobased Research Report 1184. https://www.semanticscholar.org/paper/Literature-review-of-physical-and-chemical-for-Harmsen-Huijgen/aaab2afd9f4da70759c4667474b292f63dd53fd8. Accessed 10 Feb 2020

  2. Laghari SM, Isa MH, Abdullah AB, Laghari AJ, Saleem H (2014) Microwave individual and combined pre-treatments on lignocellulosic biomasses. IOSR-JEN 4:14–28. https://doi.org/10.9790/3021-04261427

    Article  Google Scholar 

  3. Ooshima H, Aso K, Harano Y, Yamamoto T (1984) Microwave treatment of cellulosic materials for their enzyme-hydrolysis. Biotechnol Lett 6:289–294. https://doi.org/10.1007/BF00129056

    Article  Google Scholar 

  4. Azuma JI, Tanaka F, Koshijima T (1984) Enhancement of enzymatic susceptibility of lignocellulosic wastes by microwave irradiation. J Ferment Technol 62:377–384

    Google Scholar 

  5. Sun F, Chen H (2007) Evaluation of enzymatic hydrolysis of wheat straw pretreated by atmospheric glycerol autocatalysis. J Chem Technol Biotechnol 82:1039–1044. https://doi.org/10.1002/jctb.1764

    Article  Google Scholar 

  6. Zhu S, Wu Y, Yu Z, Liao J, Zhang Y (2005) Pretreatment by microwave/alkali of rice straw and its enzymatic hydrolysis. Process Biochem 40:3082–3086. https://doi.org/10.1016/j.procbio.2005.03.016

    Article  Google Scholar 

  7. Zhu S, Wu Y, Yu Z, Zhang X, Wang C, Yu F, Jin S (2006) Production of ethanol from microwave-assisted alkali pretreated wheat straw. Process Biochem 41:869–873. https://doi.org/10.1016/j.procbio.2005.10.024

    Article  Google Scholar 

  8. Janker-Obermeier I, Sieber V, Faulstich M, Schieder D (2012) Solubilization of hemicellulose and lignin from wheat straw through microwave-assisted alkali treatment. Ind Crop Prod 39:198–203. https://doi.org/10.1016/j.indcrop.2012.02.022

    Article  Google Scholar 

  9. Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkaline pretreatment. Biochem Eng J 38:269–278. https://doi.org/10.1016/j.bej.2007.08.001

    Article  Google Scholar 

  10. Tsubaki S, Azuma J-I (2013) Total fractionation of green tea residue by microwave-assisted alkaline pretreatment and enzymatic hydrolysis. Bioresour Technol 131:485–491. https://doi.org/10.1016/j.biortech.2013.01.001

    Article  Google Scholar 

  11. Liu Y, Sun B, Zheng X, Yu L, Li J (2018) Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresour Technol 247:859–863. https://doi.org/10.1016/j.biortech.2017.08.059

    Article  Google Scholar 

  12. Klein M, Griess O, Pulidindi IN, Perkas N, Gedanken A (2016) Bioethanol production from Ficus religiosa leaves using microwave irradiation. J Environ Manag 177:20–25. https://doi.org/10.1016/j.jenvman.2016.03.050

    Article  Google Scholar 

  13. Mihiretu GT, Brodin M, Chimphango AF, Øyaas K, Hoff BH, Görgens JF (2017) Single-step microwave-assisted hot water extraction of hemicelluloses from selected lignocellulosic materials – a biorefinery approach. Bioresour Technol 24:669–680. https://doi.org/10.1016/j.biortech.2017.05.159

    Article  Google Scholar 

  14. Hou X, Wang Z, Sun J, Li M, Wang S, Chen K, Gao Z (2019) A microwave-assisted aqueous ionic liquid pretreatment to enhance enzymatic hydrolysis of Eucalyptus and its mechanism. Bioresour Technol 272:99–104. https://doi.org/10.1016/j.biortech.2018.10.003

    Article  Google Scholar 

  15. Kainthola J, Shariq M, Kalamdhad AS, Goud VV (2019) Enhanced methane potential of rice straw with microwave assisted pretreatment and its kinetic analysis. J Environ Manag 232:188–196. https://doi.org/10.1016/j.jenvman.2018.11.052

    Article  Google Scholar 

  16. Zieliński M, Kisielewska M, Dudek M, Rusanowska P, Nowicka A, Krzemieniewski M, Kazimierowicz J, Dębowski M (2019) Comparison of microwave thermohydrolysis and liquid hot water pretreatment of energy crop Sida hermaphrodita for enhanced methane production. Biomass Bioenergy 128:105324. https://doi.org/10.1016/j.biombioe.2019.105324

    Article  Google Scholar 

  17. Nuchdang S, Khemkhao M, Techkarnjanaruk S, Phalakornkule C (2015) Comparative biochemical methane potential of paragrass using unacclimated and acclimated microbial consortium. Bioresour Technol 183:111–119. https://doi.org/10.1016/j.biortech.2015.02.049

    Article  Google Scholar 

  18. Sahoo D, Ummalyma SB, Okram AK, Sukumaran RK, George E, Pandey A (2017) Potential of Brahiaria mutica (Para grass) for bioethanol production from Loktak Lake. Bioresour Technol 242:133–138. https://doi.org/10.1016/j.biortech.2017.03.047

    Article  Google Scholar 

  19. Thongtus V, Nuchdang S, Chirathivat P, Moore EJ, Phalakornkule C (2019) Effect of dilute-acid hydrolysis conditions on sugar and furfurals productions from paragrass. IOP Conf Ser: Earth Environ Sci 265:012010. https://doi.org/10.1088/1755-1315/265/1/012010

    Article  Google Scholar 

  20. Blainski A, Lopes GC, de Mello JCP (2013) Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium Brasiliense L. Molecules 18:6852–6865. https://doi.org/10.3390/molecules18066852

    Article  Google Scholar 

  21. Redding AP, Wang Z, Keshwani DR, Cheng JJ (2011) High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresour Technol 102:1415–1424. https://doi.org/10.1016/j.biortech.2010.09.053

    Article  Google Scholar 

  22. Eliana C, Jorge R, Juan P, Luis R (2014) Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel 118:41–47. https://doi.org/10.1016/j.fuel.2013.10.055

    Article  Google Scholar 

  23. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic hydrolysis. Bioresour Technol 101:4900–4906. https://doi.org/10.1016/j.biortech.2009.10.066

    Article  Google Scholar 

  24. Papa G, Rodriguez S, George A, Schievano A, Orzi V, Sale KL, Singh S, Adani F, Simmons BA (2015) Comparison of different pretreatments for the production of bioethanol and biomethane from corn Stover and switchgrass. Bioresour Technol 183:101–110. https://doi.org/10.1016/j.biortech.2015.01.121

    Article  Google Scholar 

  25. Shao L, Zhang Q, You T, Zhang X, Xu F (2018) Microwave-assisted efficient depolymerization of alkaline lignin in methanol/formic acid media. Bioresour Technol 264:238–243. https://doi.org/10.1016/j.biortech.2018.05.083

    Article  Google Scholar 

  26. Yang B, Montgomery R (1996) Alkaline degradation of glucose: effect of initial concentration of reactants. Carbohydr Res 280:27–45. https://doi.org/10.1016/0008-6215(95)00294-4

    Article  Google Scholar 

  27. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  28. Sun XF, Xu F, Zhao H, Sun RC, Fowler P, Baird MS (2005) Physicochemical characterisation of residue hemicelluloses isolated with cyanamide-activated hydrogen peroxide from organosolv pre-treated wheat straw. Bioresour Technol 96:1342–1349. https://doi.org/10.1016/j.biortech.2004.11.018

    Article  Google Scholar 

  29. Rawat R, Kumbhar BK, Tewari L (2013) Optimization of alkali pretreatment for bioconversion of poplar (Populus deltoides) biomass into fermentable sugars using response surface methodology. Ind Crop Prod 44:220–226. https://doi.org/10.1016/j.indcrop.2012.10.029

    Article  Google Scholar 

  30. Muthuvelu KS, Rajarathinam R, Manickam NK, Uthandi S (2018) Development of co-immobilized tri-enzyme biocatalytic system for one-pot pretreatment of four different perennial lignocellulosic biomass and evaluation of their bioethanol production potential. Bioresour Technol 269:227–236. https://doi.org/10.1016/j.biortech.2018.08.091

    Article  Google Scholar 

  31. Muthuvelu KS, Rajarathinam R, Kanagaraj LP, Ranganathan RV, Dhanasekaran K, Manickam NK (2019) Evaluation and characterization of novel sources of sustainable lignocellulosic residues for bioethanol production using ultrasound-assisted alkaline pre-treatment. Waste Manag 87:368–374. https://doi.org/10.1016/j.wasman.2019.02.015

    Article  Google Scholar 

  32. Diaz AB, MMd M, Bezerra-Bussoli C, CdC N, Blandino A, Silva R, Gomes E (2015) Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour Technol 185:316–323. https://doi.org/10.1016/j.biortech.2015.02.112

    Article  Google Scholar 

  33. Rodríguez AM, Prieto P, de la Hoz A, Díaz-Ortiz Á, Martín R, García JI (2015) Influence of polarity and activation energy in microwave-assisted organic synthesis (MAOS). ChemistryOpen 4:308–317. https://doi.org/10.1002/open.201402123

    Article  Google Scholar 

Download references

Funding

The authors received financial support from the National Research Council of Thailand (KMUTNB-NRU-59-05) and Thailand Research Fund (RSA5980064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantaraporn Phalakornkule.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Statement of novelty

Microwave-assisted alkaline pretreatment enhanced lignin degradation in paragrass. TRS yield after enzymatic hydrolysis increased from 316 to 750 mg g−1 of the pretreated paragrass. Hydrolysis of hemicellulose was enhanced as evidenced by increased xylose yield. Hydrolysis of cellulose was enhanced as evidenced by increased glucose yield. Levels of furfurals were low due to low release of monomers during pretreatment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuchdang, S., Thongtus, V., Khemkhao, M. et al. Enhanced production of reducing sugars from paragrass using microwave-assisted alkaline pretreatment. Biomass Conv. Bioref. 11, 2471–2483 (2021). https://doi.org/10.1007/s13399-020-00624-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00624-1

Keywords

Navigation