Skip to main content

Advertisement

Log in

Chlorophytum rhizosphere, a suitable environment for electroactive biofilm development

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The electroactivity of Chlorophytum rhizospheric soil using imposed potential chronoamperometry and a characteristic cyclic voltammetry was demonstrated in the present work. Five different polarizations were tested: − 0.3, − 0.155, 0, + 0.155, and + 0.3 V/SCE. The current density had stabilized around − 0.0068 mA/m2 and − 0.03 mA/m2 at − 0.155 and − 0.3 V/SCE, respectively. However, at 0, + 0.155, and + 0.3 V/SCE, a current density had reached respectively 1.46 A/m2, 1.48 A/m2, and 0.6 A/m2. The potential + 0.155 V/SCE seemed to better stimulate the electrogenic bacteria activity of the Chlorophytum rhizosphere. Different bacterial strains had formed electroactive biofilms in response to different electrode polarizations. The Chlorophytum rhizosphere electroactivity has depended on strict anaerobes as well as facultative anaerobic bacteria under anaerobic conditions. Furthermore, the Chlorophytum rhizosphere soil had closed almost equal proportions of Firmicutes and Proteobacteria whose electroactivity seemed to depend on the Proteobacetria more than the Firmicutes and had could be thereby a suitable environment for electroactive biofilm development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40(10):3388–3394

    Google Scholar 

  2. Andreolli M, Lampis S, Zenaro E, Salkinoja-Salonen M, Vallini G (2011) Burkholderia fungorum DBT1: a promising bacterial strain for bioremediation of PAHs-contaminated soils. FEMS Microbiol Lett 319(1):11–18

    Google Scholar 

  3. Azri Y, Tou I, Sadi M, Benhabyles L (2018) Bioelectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus. Int J Green Energ 15(4):254–263

    Google Scholar 

  4. Baron DB, LaBelle E, Coursolle D, Gralnick JA, Bond DR (2009) Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem, jbc-M109 284(42):28865–28873

    Google Scholar 

  5. Bennetto HP (1990) Electricity generation by microorganisms. Biotechnol Educ 1(4):163–168

    Google Scholar 

  6. Bergel A, Féron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7(9):900–904

    Google Scholar 

  7. Bieber D, Ramer SW, Wu CY, Murray WJ, Tobe T, Fernandez R, Schoolnik GK (1998) Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280(5372):2114–2118

    Google Scholar 

  8. Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Rabaey K (2008) Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77(5):1119–1129

    Google Scholar 

  9. Busalmen JP, Esteve-Nuñez A, Feliu JM (2008) Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport. Environ Sci Technol 42(27):2445–2450

    Google Scholar 

  10. Cabezas da Rosa A (2010) Diversity and function of the microbial community on anodes of sediment microbial fuel cells fueled by root exudates. Phd Thesis, Marburg University-Germany.

  11. Cercado-Quezada B, Delia ML, Bergel A (2011) Electrochemical micro-structuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes. Electrochem Commun 13(5):440–443

    Google Scholar 

  12. Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100(14):3518–3525

    Google Scholar 

  13. Chae K, Choi M, Ajayi F, Park W, Chang IS, Kim IS (2007) Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuel 22(1):169–176

    Google Scholar 

  14. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232

    Google Scholar 

  15. Choo YF, Lee J, Chang IS, Kim BH (2006) Bacteria communities in microbial fuel cells enriched with high concentrations of glucose and glutamate. J Microbiol Biotechnol 16:1481–1484

    Google Scholar 

  16. Chopra AK, Pham R, Houston CW (1994) Cloning and expression of putative cytotonic enterotoxin-encoding genes from Aeromonas hydrophila. Gene 139(1):87–91

    Google Scholar 

  17. Chugani SBS, Phattarasukol S, Brittnacher MJ, Choi SH, Harwood CS, Greenberg EP (2012) Strain-dependent diversity in the Pseudomonas aeruginosa quorum-sensing regulon. Proc Natl Acad Sci 109(41):2823–2831

    Google Scholar 

  18. Chung K, Okabe S (2009) Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell. Biotechnol Bioeng 104:901–910

    Google Scholar 

  19. Compton RG, Perkin SJ, Gamblin DP, Davis J, Marken F, Padden AN, John P (2000) Clostridium isatidis colonised carbon electrodes: voltammetric evidence for direct solid state redox processes. New J Chem 24(3):179–181

    Google Scholar 

  20. Cournet A, Délia ML, Bergel A, Roques C, Bergé M (2010) Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive. Electrochem Commun 12(4):505–508

    Google Scholar 

  21. Deepika J, Meignanalakshmi S, Thilagaraj WR (2013) A study on bioelectricity production by the synergistic action of Bacillus tequilensis DMR-5 and Pseudomonas aeruginosa DMR-3 isolated from rumen fluid. Am J Environ Sci 9(5):424

    Google Scholar 

  22. Dong XZ, Cai MY (2001) Determinative manual for routine bacteriology. Beijing Scientific Press, Beijing, pp 370–390

    Google Scholar 

  23. Drider D, Prevost H (2009) Bactéries lactiques: physiologie, métabolisme, génomique et applications industrielles. Economica.

  24. Dulon S, Parot S, Delia ML, Bergel A (2007) Electroactive biofilms: new means for electrochemistry. J Appl Electrochem 37(1):173–179

    Google Scholar 

  25. Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72(12):7835–7841

    Google Scholar 

  26. Fan Y, Hu H, Liu H (2007) Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348–354

    Google Scholar 

  27. Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T (2014) Regulation of biofilm formation in P seudomonas and B urkholderia species. Environ Microbiol 16(7):1961–1981

    Google Scholar 

  28. Finkelstein DA, Tender LM, Zeikus JG (2006) Effect of electrode potential on electrode-reducing microbiota. Environ Sci Technol 40(22):6990–6995

    Google Scholar 

  29. Freguia S, Rabaey K, Yuan Z, Keller J (2008) Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 42:7937–7943

    Google Scholar 

  30. Gawrońska H, Bakera B (2015) Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual Atmos Health 8(3):265–272

    Google Scholar 

  31. Gilani SR, Yaseen A, Zaidi SRA, Zahra M, Mahmood Z (2016) Photocurrent generation through plant microbial fuel cell by varying electrode materials. J Chem Soc Pak 38(1)

  32. Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6(6):596–604

    Google Scholar 

  33. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics 6(9):591

    Google Scholar 

  34. Heilmann J, Logan BE (2006) Production of electricity from proteins using a microbial fuel cell. Water Environ Res 78(5):531–537

    Google Scholar 

  35. Helder M, Strik DP, Timmers RA, Raes SM, Hamelers HV, Buisman CJ (2013) Resilience of roof-top plant-microbial fuel cells during Dutch winter. Biomass Bioenergy 51:1–7

    Google Scholar 

  36. Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928

    Google Scholar 

  37. Tou I, Azri YM, Sadi M, Lounici H, Kebbouche SG (2019) Chlorophytum microbial fuel cell characterization. Int J Green Energ. https://doi.org/10.1080/15435075.2019.1650049

  38. Jiang J, Zhao Q, Zhang J, Zhang G, Lee DJ (2009) Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresour Technol 100(23):5808–5812

    Google Scholar 

  39. Jiang YB, Zhong WH, Han C, Deng H (2016) Characterization of electricity generated by soil in microbial fuel cells and the isolation of soil source exoelectrogenic bacteria. Front Microbiol 7:1776

    Google Scholar 

  40. Jia-ying N, C. H. E. (2013) Study on degradation abilities of Chlorophytum comosum and Hedera nepalensis on indoor formaldehyde pollution [J]. J Anhui Agric Sci 15:095

    Google Scholar 

  41. Jin M, Wang Y, Huang M, Lu Z, Wang Y (2014) Sulphation can enhance the antioxidant activity of polysaccharides produced by Enterobacter cloacae Z0206. Carbohydr Polym 99:624–629

    Google Scholar 

  42. Jung S, Regan JM (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol 77(2):393–402

    Google Scholar 

  43. Kato AM, Torres CI, Rittmann BE (2007) Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98(6):1171–1182

    Google Scholar 

  44. Ketep SF, Bergel A, Bertrand M, Achouak W, Fourest E (2013) Sampling location of the inoculum is crucial in designing anodes for microbial fuel cells. Biochem Eng J 73:12–16

    Google Scholar 

  45. Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung NT (2004) Enrichment of microbial community generating electricity using a fuel-celltype electrochemical cell. Appl Microbiol Biotechnol 63:672–681

    Google Scholar 

  46. Kim GT, Webster G, Wimpenny JW, Kim BH, Kim HJ, Weightman AJ (2006) Bacterial community structure, compartmentalization and activity in amicrobial fuel cell. Appl Microbiol 101:698–710

    Google Scholar 

  47. Kim JR, Beecroft NJ, Varcoe JR, Dinsdale RM, Guwy AJ, Slade RC, Premier GC (2011) Spatiotemporal development of the bacterial community in a tubular longitudinal microbial fuel cell. Appl Microbiol Biotechnol 90(3):1179–1191

    Google Scholar 

  48. Kim OS, Cho YJ, Lee K, Yoon SH, Na M, Kim H, Park SC, Jeon YS, Lee JH, Won H, Yi S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(3):716–721

    Google Scholar 

  49. Kokko ME, Mäkinen AE, Puhakka JA (2016) Anaerobes in bioelectrochemical systems. In: Anaerobes in Biotechnology. Springer, Cham, pp 263–292

    Google Scholar 

  50. Lal D (2013) Microbes to generate electricity. Indian J Microbiol 53(1):120–122

    Google Scholar 

  51. Lapinsonnière L (2013) Contribution à l’évaluation et à l’optimisation des application des systèmes microbio-électrochimiques: traitement des eaux, production d’électricité, bioélectrosynthèse. Doctoral dissertation, Rennes 1-france.

  52. Lee J, Phung NT, Chang IS, Kim BH, Sung HC (2003) Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett 223(2):185–191

    Google Scholar 

  53. Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39(2):658–662

    Google Scholar 

  54. Liu M, Yuan Y, Zhang LX, Zhuang L, Zhou SG, Ni JR (2010) Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells. Bioresour Technol 101(6):1807–1811

    Google Scholar 

  55. Liu T, Yu YY, Chen T, Chen WN (2017) A synthetic microbial consortium of Shewanella and Bacillus for enhanced generation of bioelectricity. Biotechnol Bioeng 114(3):526–532

    MathSciNet  Google Scholar 

  56. Logan BE (2008) Microbial fuel cells. Wiley, Hoboken

    Google Scholar 

  57. Logan BE (2005) Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol 52(1–2):31–37

    Google Scholar 

  58. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Rabaey K (2006a) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Google Scholar 

  59. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518

    Google Scholar 

  60. Logan BE, Hamelers B, Rozendal R et al (2006b) Microbial fuel cells: methodology and technology. Sci Technol 40(17):5181–5192

    Google Scholar 

  61. Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19(6):564–571

    Google Scholar 

  62. Lovley DR, Ferry JG (1985) Production and consumption of H2 during growth of Methanosarcina spp. on acetate. Appl. Environ. Microbiol 49:247–249

    Google Scholar 

  63. Lovley DR, Nevin KP (2008) Electricity production with electricigens. American Society of Microbiology, Washington, D.C., pp 295–306

    Google Scholar 

  64. Lu L, Xing D, Ren N (2012) Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water Res 46(7):2425–2434

    Google Scholar 

  65. Masih SA, Devasahayam M, Srivastava R, Gupta S (2012) Enterobacter species specific microbial fuel cells show increased power generation with high coulombic efficiency. Trends Biosci 5:114–118

    Google Scholar 

  66. Min B, Kim J, Oh S, Regan JM, Logan BE (2005a) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39(20):4961–4968

    Google Scholar 

  67. Min B, Cheng S, Logan BE (2005b) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39(9):1675–1686

    Google Scholar 

  68. Mohan SV, Saravanan R, Raghavulu SV, Mohanakrishna G, Sarma PN (2008) Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Bioresour Technol 99(3):596–603

    Google Scholar 

  69. Moqsud MA, Omine K, Yasufuku N, Bushra QS, Hyodo M, Nakata Y (2014) Bioelectricity from kitchen and bamboo waste in a microbial fuel cell. Waste Manag Res 32(2):124–130

    Google Scholar 

  70. Nimje VR, Chen CY, Chen CC, Jean JS, Reddy AS, Fan CW, Chen JL (2009) Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. J Power Sources 190(2):258–263

    Google Scholar 

  71. Nimje VR, Chen CY, Chen CC, Tsai JY, Chen HR, Huang YM, Shih RC (2011) Microbial fuel cell of Enterobacter cloacae: effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical. Int J Hydrog Energy 36(17):11093–11101

    Google Scholar 

  72. Nishio K, Nakamura R, Lin X, Konno T, Ishihara K, Nakanishi S, Hashimoto K (2013) Extracellular electron transfer across bacterial cell membranes via a cytocompatible redox-active polymer. ChemPhysChem 14(10):2159–2163

    Google Scholar 

  73. Pankratova G, Leech D, Gorton L, Hederstedt L (2018) Extracellular electron transfer by the Gram-positive bacterium Enterococcus faecalis. Biochemistry 57(30):4597–4603

    Google Scholar 

  74. Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M et al (2001) A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7(6):297–306

    Google Scholar 

  75. Parot S (2007) Biofilms électroactifs: formation, caractérisation et mécanismes. PhD Thesis-Doctoral dissertation, Toulouse-France

  76. Parot S, Vandecandelaere I, Cournet A, Délia ML, Vandamme P, Bergé M, Bergel A (2011) Catalysis of the electrochemical reduction of oxygen by bacteria isolated from electro-active biofilms formed in seawater. Bioresour Technol 102(1):304–311

    Google Scholar 

  77. Parot S, Délia ML, Bergel A (2008) Forming electrochemically active biofilms from garden compost under chronoamperometry. Bioresour Technol 99(11):4809–4816

    Google Scholar 

  78. Parot S, Nercessian O, Delia ML, Achouak W, Bergel A (2009) Electrochemical checking of aerobic isolates from electrochemically active biofilms formed in compost. J Appl Microbiol 106(4):1350–1359

    Google Scholar 

  79. Petersen SP, Ahring BK (1991) Acetate oxidation in a thermophilic anaerobic sewage-sludge digestor: the importance of non-aceticlastic methanogenesis from acetate. FEMS Microbiol Lett 86(2):149–152

    Google Scholar 

  80. Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH et al (2003) A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223(1):129–134

    Google Scholar 

  81. Pham TH, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke LP, De Maeyer K et al (2008) Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77(5):1119–1129

    Google Scholar 

  82. Prescott LM, Harley JP, Klein DA, Willey JM (2010) Microbiologie. De Boeck Supérieur

  83. Qiao YJ, Qiao Y, Zou L, Wu XS, Liu JH (2017) Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines. Bioelectrochemistry 117:34–39

    Google Scholar 

  84. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298

    Google Scholar 

  85. Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. The ISME journal 1(1):9

    Google Scholar 

  86. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382

    Google Scholar 

  87. Rafrafi Y (2012) Impact des facteurs biotiques sur le réseau métabolique des écosystèmes producteurs d’hydrogène par voie fermentaire en culture mixte. Montpellier 2

  88. Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75(11):3673–3367

    Google Scholar 

  89. Ringeisen B, Henderson RE, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meean JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634

    Google Scholar 

  90. Sacco NJ, Figuerola EL, Pataccini G, Bonetto MC, Erijman L, Cortón E (2012) Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells. Bioresour Technol 126:328–335

    Google Scholar 

  91. Salvin P (2012) Etude des biofilms électroactifs issus des milieux humides de la Guyane Française: application aux piles à combustible microbiennes. Antilles-Guyane.

  92. Salvin P, Roos C, Robert F (2012) Tropical mangrove sediments as a natural inoculum for efficient electroactive biofilms. Bioresour Technol 120:45–51

    Google Scholar 

  93. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244

    Google Scholar 

  94. Schaetzle O (2010) Développement et étude d’une pile à combustible microbienne en vue d’une application dans le traitement des eaux. Doctoral dissertation, Renne 1

  95. Sen SK, Raut S, Satpathy S, Rout PR, Bandyopadhyay B, Mohapatra PKD (2014) Characterizing novel thermophilic amylase producing bacteria from Taptapani hot spring, Odisha, India. Jundishapur J of Microbiol 7(12)

  96. Sophia AC, Sreeja S (2017) Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator. Sustainable Energy Technologies and Assessments 21:59–66

    Google Scholar 

  97. Sun D, Call DF, Kiely PD, Wang A, Logan BE (2012) Syntrophic interactions improve power production in formic acid fed MFCs operated with set anode potentials or fixed resistances. Biotechnol Bioeng 109(2):405–414

    Google Scholar 

  98. Surajbhan S, Sreekrishnan TR (2012) Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 47(6):878–886

    Google Scholar 

  99. Svensäter G, Bergenholtz G (2004) Biofilms in endodontic infections. Endod Top 9(1):27–36

    Google Scholar 

  100. Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D (2014) Electroactive bacteria—molecular mechanisms and genetic tools. Appl Microbiol Biotechnol 98(20):8481–8495

    Google Scholar 

  101. Tao JM, Wang YB, Dai J (2011) Accumulation and tolerance of zinc in ornamental plant Chlorophytum comosum. Appl Mech Mater 66:524–527

    Google Scholar 

  102. Timmers RA, Strik DP, Hamelers HV, Buisman CJ (2012) Characterization of the internal resistance of a plant microbial fuel cell. Electrochim Acta 72:165–171

    Google Scholar 

  103. Timmers RA, Strik DP, Hamelers HV, Buisman CJ (2013) Electricity generation by a novel design tubular plant microbial fuel cell. Biomass Bioenergy 51:60–67

    Google Scholar 

  104. Timmers RA, Strik DP, Hamelers HV, Buisman CJ (2010) Long-term performance of a plant microbial fuel cell with Spartina anglica. Appl Microbiol Biotechnol 86(3):973–981

    Google Scholar 

  105. Tommasi T, Lombardelli G (2017) Energy sustainability of microbial fuel cell (MFC): a case study. J Power Sources 356:438–447

    Google Scholar 

  106. Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE (2009) Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol , in press 43(24):9519–9524

    Google Scholar 

  107. Toutain CM, Caiazza NC, O’Toole GA (2004) Molecular basis of biofilm development by pseudomonads. In: Microbial biofilms. American Society of Microbiology, Washington, D.C, pp 43–63

    Google Scholar 

  108. Wagner RC, Call DF, Logan BE (2010) Optimal set anode potentials vary in bioelectrochemical systems. Environ Sci Technol 44(16):6036–6041

    Google Scholar 

  109. Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL et al (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2(11):1146

    Google Scholar 

  110. Wu W, Yang F, Liu X, Bai L (2014) Influence of substrate on electricity generation of Shewanella loihica PV-4 in microbial fuel cells. Microb Cell Factories 13(1):69

    Google Scholar 

  111. Xing D, Cheng S, Regan JM, Logan BE (2009) Change in microbial communities in acetateand glucose-fed microbial fuel cells in the presence of light. Biosens Bioelectron 25:105–111

    Google Scholar 

  112. Yoshida N, Yano K, Morita T, McNiven SJ, Nakamura H, Karube I (2000) A mediator-type biosensor as a new approach to biochemical oxygen demand estimation. Analyst 125(12):2280–2284

    Google Scholar 

  113. Yu CM, Chen LC (2008) Turning glucose and starch into electricity with an enzymatic fuel cell. Eng Agric Environ Food 2(1):1–6

    Google Scholar 

  114. Zafar Z, Ayaz K, Nasir MH, Yousaf S, Sharafat I, Ali N (2018) Electrochemical performance of biocathode microbial fuel cells using petroleum-contaminated soil and hot water spring. Int J Environ Sci Technol:1–14

  115. Zhang G, Zhao Q, Jiao Y, Wang K, Lee DJ, Ren N (2012) Efficient electricity generation from sewage sludge usingbiocathode microbial fuel cell. Water Res 46(1):43–52

    Google Scholar 

  116. Zhang T, Cui C, Chen S, Yang H, Shen P (2008) The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem Commun 10(2):293–297

    Google Scholar 

  117. Zhang T, Cui C, Chen S, Ai X, Yang H, Shen P, Peng Z (2006) A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem Commun 21:2257–2259

    Google Scholar 

  118. Zhang T, Zhang L, Su W, Gao P, Li D, He X, Zhang Y (2011) The direct electrocatalysis of phenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila under alkaline condition in microbial fuel cells. Bioresour Technol 102(14):7099–7102

    Google Scholar 

  119. Zhao F, Rahunen N, Varcoe JR, Chandra A, Avignone-Rossa C, Thumser AE, Slade RC (2003) Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ Sci Technol 42(13):4971–4976

    Google Scholar 

  120. Zhao G, Ma F, Wei L, Chua H, Chang CC, Zhang XJ (2012) Electricity generation from cattle dung using microbial fuel cell technology during anaerobic acidogenesis and the development of microbial populations. Waste Manag 32(9):165

    Google Scholar 

  121. Zhen G, Lu X, Li Y, Zhao Y, Wang B, Song Y, Cao X (2012) Novel insights into enhanced dewaterability of waste activated sludge by Fe (II)-activated persulfate oxidation. Bioresour Technol 119:7–14

    Google Scholar 

  122. Zuo Y, Xing M, Regan D, Logan JBE (2008) Isolation of the exoelectrogenic bacterium Ochobactrum anthropic YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol 74(3):130–3137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Drouiche.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tou, I., Azri, Y., Sadi, M. et al. Chlorophytum rhizosphere, a suitable environment for electroactive biofilm development. Biomass Conv. Bioref. 11, 2457–2469 (2021). https://doi.org/10.1007/s13399-020-00615-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00615-2

Keywords

Navigation