Skip to main content
Log in

Feedstock particle size distribution and water content dynamic in a pellet mill production process and comparative sieving performance of horizontal 3.15-mm mesh and 3.15-mm hole sieves

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Pellet feedstock particle size distribution is the main factor affecting pellet quality. Feedstock samples were obtained from different places in the production process of a commercial pellet mill. Particle size distribution and water content of the sieved particle fractions were analyzed. The results showed an alternation of particle size distribution and water content of the feedstock induced by the processing in the mill. Storage had a balancing effect on the water content distribution between the different particle size classes. Further experiments evaluated the reason for the underrepresentation of the 2.8–3.15-mm fraction in the feedstock. It was found that the major sieving factor for non-spherical wood particles was their width rather than their length, though the aspect ratio was important for the sorting between the 2.8–3.15-mm and the 2.0–2.8-mm sieve fractions. The significant differences between the particle width in the sieve fractions and the distribution of the particle aspect ratio improved when using a 3.15-mm mesh sieve instead of the 3.15-mm hole sieve. This indicates the better sieving performance of the 3.15-mm mesh sieve, which should be considered by pellet manufacturers and researchers investigating pellet feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pöyry (2019) Global wood pellet production from 2010 to 2020, by region (in million metric tons), New York, USA

  2. Calderón C, Gauthier G, Jossart J-M (2016) AEBIOM Statistical report 2016 - Key findings: European bioenergy outlook, Brussel, Belgium

  3. DIN Normenausschuss Materialprüfung (2014) Solid biofuels - Fuel specifications and classes - Part 2: Graded wood pellets(17225-2)

  4. Kaliyan N, Vance Morey R (2009) Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 33(3):337–359. https://doi.org/10.1016/j.biombioe.2008.08.005

    Article  Google Scholar 

  5. Fengel D, Wegener G (1989) Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin

    Google Scholar 

  6. (2010) Erste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über kleine und mittlere Feuerungsanlagen - 1. BImSchV)

  7. Samuelsson R, Thyrel M, Sjöström M et al (2009) Effect of biomaterial characteristics on pelletizing properties and biofuel pellet quality. Fuel Process Technol 90(9):1129–1134. https://doi.org/10.1016/j.fuproc.2009.05.007

    Article  Google Scholar 

  8. Paczkowski S, Kraft R, Kharazipour A (2013) Storage-induced emissions from different wood species. Holzforschung 67(8). doi: https://doi.org/10.1515/hf-2012-0199

  9. Paczkowski S, Jaeger D, Pelz S (2018) Optimizing storage emissions of wood flakes by gas sensor controlled thermal oxidation of lipids. Biomass Bioenergy 117:146–153. https://doi.org/10.1016/j.biombioe.2018.07.016

    Article  Google Scholar 

  10. Arshadi M, Gref R, Geladi P et al (2008) The influence of raw material characteristics on the industrial pelletizing process and pellet quality. Fuel Process Technol 89(12):1442–1447. https://doi.org/10.1016/j.fuproc.2008.07.001

    Article  Google Scholar 

  11. Bergström D, Israelsson S, Öhman M et al (2008) Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Process Technol 89(12):1324–1329. https://doi.org/10.1016/j.fuproc.2008.06.001

    Article  Google Scholar 

  12. Serrano C, Monedero E, Lapuerta M et al (2011) Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Process Technol 92(3):699–706. https://doi.org/10.1016/j.fuproc.2010.11.031

    Article  Google Scholar 

  13. Garcia-Maraver A, Zamorano M, Fernandes U et al (2014) Relationship between fuel quality and gaseous and particulate matter emissions in a domestic pellet-fired boiler. Fuel 119:141–152. https://doi.org/10.1016/j.fuel.2013.11.037

    Article  Google Scholar 

  14. DIN Deutsches Insitut für Normung e.V. (2015) Determination of moisture content – Oven dry method: Part 1: Total moisture – reference method(18134-1)

  15. DIN Deutsches Insitut für Normung e.V. (2016) Solid biofuels - determination of particle size distribution for uncompressed fuels: Part 2: Vibrating screen method using sieves with aperture of 3,15 mm and below(17827-2:2016-10)

  16. Normenausschuss Bauwesen im DIN Deutsches Insitut für Normung e.V. (2001) Test sieves - technical requirements and testing: Part 1: Test sieves of metal wire cloth(3310-1)

  17. Normenausschuss Bauwesen im DIN Deutsches Insitut für Normung e.V. (2001) Test sieves - technical requirements and testing: Part 2: Test sieves of perforated plates(3310-2)

  18. DIN Deutsches Insitut für Normung e.V. (2016) Solid biofuels - determination of particle size distribution for uncompressed fuels: Part 1: Oscillating screen method using sieves with apertures of 3,15 mm and above(17827-1)

  19. Gil M, Teruel E, Arauzo I (2014) Analysis of standard sieving method for milled biomass through image processing. Effects of particle shape and size for poplar and corn stover. Fuel 116:328–340. https://doi.org/10.1016/j.fuel.2013.08.011

    Article  Google Scholar 

  20. Guo Q, Chen X, Liu H (2012) Experimental research on shape and size distribution of biomass particle. Fuel 94:551–555. https://doi.org/10.1016/j.fuel.2011.11.041

    Article  Google Scholar 

  21. Rezaei H, Lim CJ, Lau A et al (2016) Size, shape and flow characterization of ground wood chip and ground wood pellet particles. Powder Technol 301:737–746. https://doi.org/10.1016/j.powtec.2016.07.016

    Article  Google Scholar 

  22. Robertson G, Olson J, Allen P et al. Measurement of fiber length, courseness and shape with the fiber quality analyzer

  23. Technical Association of Pulp and Paper Industry TAPPI (2013) Fiber length of pulp by projection(T 234 cm-84)

  24. Bouafif H, Koubaa A, Perré P et al (2009) Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Compos A: Appl Sci Manuf 40(12):1975–1981. https://doi.org/10.1016/j.compositesa.2009.06.003

    Article  Google Scholar 

  25. Fu SY, Hu X, Yue CY (1999) Effects of fiber length and orientation distributions on the mechanical properties of short-fiber-reinforced polymers-a review. Mater Sci Res Int(5): 74–83

  26. Lu H, Ip E, Scott J et al (2010) Effects of particle shape and size on devolatilization of biomass particle. Fuel 89(5):1156–1168. https://doi.org/10.1016/j.fuel.2008.10.023

    Article  Google Scholar 

  27. Diego LF, Garcia-Labiano F, Abad A et al. (2002) Coupled drying and devolatilisation of non-spherical wet pine wood particles in fluidised beds. J Anal Appl Pyrolysis(65): 173–184

  28. Paulrud S, Nilsson C (2004) The effects of particle characteristics on emissions from burning wood fuel powder. Fuel 83(7-8):813–821. https://doi.org/10.1016/j.fuel.2003.10.010

    Article  Google Scholar 

  29. Ruben Sudhakar D, Kolar AK (2011) Experimental investigation of the effect of initial fuel particle shape, size and bed temperature on devolatilization of single wood particle in a hot fluidized bed. J Anal Appl Pyrolysis 92(1):239–249. https://doi.org/10.1016/j.jaap.2011.06.004

    Article  Google Scholar 

  30. Westerhof RJM, Nygård HS, van Swaaij WPM et al (2012) Effect of particle geometry and microstructure on fast pyrolysis of beech wood. Energy Fuel 26(4):2274–2280. https://doi.org/10.1021/ef201688n

    Article  Google Scholar 

  31. Hernández JJ, Aranda-Almansa G, Bula A (2010) Gasification of biomass wastes in an entrained flow gasifier: effect of the particle size and the residence time. Fuel Process Technol 91(6):681–692. https://doi.org/10.1016/j.fuproc.2010.01.018

    Article  Google Scholar 

  32. Tinaut FV, Melgar A, Pérez JF et al (2008) Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study. Fuel Process Technol 89(11):1076–1089. https://doi.org/10.1016/j.fuproc.2008.04.010

    Article  Google Scholar 

  33. Kaltschmitt M, Hartmann H, Hofbauer H (eds) (2016) Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 3. Auflage, Springer Vieweg

    Google Scholar 

  34. Chevanan N, Womac AR, Bitra VSP et al (2009) Flowability parameters for chopped switchgrass, wheat straw and corn stover. Powder Technol 193(1):79–86. https://doi.org/10.1016/j.powtec.2009.02.009

    Article  Google Scholar 

  35. Ganesan V, Rosentrater KA, Muthukumarappan K (2008) Flowability and handling characteristics of bulk solids and powders – a review with implications for DDGS. Biosyst Eng 101(4):425–435. https://doi.org/10.1016/j.biosystemseng.2008.09.008

    Article  Google Scholar 

  36. Jensen PD, Mattsson JE, Kofman PD et al (2004) Tendency of wood fuels from whole trees, logging residues and roundwood to bridge over openings. Biomass Bioenergy 26(2):107–113. https://doi.org/10.1016/S0961-9534(03)00101-6

    Article  Google Scholar 

  37. Mattsson JE, Kofman PD (2003) Influence of particle size and moisture content on tendency to bridge in biofuels made from willow shoots. Biomass Bioenergy 24(6):429–435. https://doi.org/10.1016/S0961-9534(02)00178-2

    Article  Google Scholar 

  38. Podczeck F, Miah Y (1996) The influence of particle size and shape on the angle of internal friction and the flow factor of unlubricated and lubricated powders. Int J Pharm(144): 187–194

  39. Robinson DA, Friedman SP (2002) Observations of the effects ofparticle shape and particle size distribution on avalanching of granular media. Physica A(311): 97–110

  40. Mrackova E, Kristak L, Kucerka M et al. (2016) Creation of wood dust during wood processing: size analysis, dust separation, and occupational health. Bioresources(11): 209–222

  41. Normenausschuss Bauwesen im DIN Deutsches Insitut für Normung e.V. (2018) Representation of results of particle size analysis: Part 2: Calculation of average particle sizes/diameters and moments from particle size(9276-2)

  42. Hartmann H, Böhm T, Daugbergjensen P et al (2006) Methods for size classification of wood chips. Biomass Bioenergy 30(11):944–953. https://doi.org/10.1016/j.biombioe.2006.06.010

    Article  Google Scholar 

  43. Weiner IB, Craighead WE (eds) (2010) The Corsini encyclopedia of psychology, 4th ed. John Wiley, Hoboken

    Google Scholar 

  44. Samuelsson R, Larsson SH, Thyrel M et al (2012) Moisture content and storage time influence the binding mechanisms in biofuel wood pellets. Appl Energy 99:109–115. https://doi.org/10.1016/j.apenergy.2012.05.004

    Article  Google Scholar 

  45. Retsch GmbH (2015) Sieve analysis: an expert guide to particle size analysis, Haan

Download references

Acknowledgments

The authors want to thank the technical staff of the University of Applied Science Rottenburg, Dr. Rainer Kirchhof, Dipl.-Ing. (FH) Carola Lepski, B.Sc. Peter Grammer, and B.Sc. Jodok Braun for their technical support.

Funding

The work of Dr. Sebastian Paczkowski and M.Sc. Michael Russ was funded by the Bundesministerium für Bildung und Forschung, Germany (Project BiCoLim, grant number 01DN16036), respectively. The work of B.Sc. Christian Sauer was funded by the University of Applied Science Rottenburg, Germany, and the work of Anja Anetzberger was funded by the sawmill Haisch GmbH & Co. KG, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Paczkowski.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Particle size distribution of pellet feedstock alternates during the processing in a pellet mill

• The water content in the particle fractions alternates during the processing in a pellet mill and is balanced between large and small particles by the storage time after drying

• The fractionation of wood flakes with a horizontal sieving machine depends on the particle width and the particle aspect ratio

• Using a 3.15-mm mesh sieve instead of a 3.15-mm hole sieve improves the sieving process by homogenizing both the dry mass distribution between the sieve fractions and the aspect ratio of the wood flakes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paczkowski, S., Sauer, C., Anetzberger, A. et al. Feedstock particle size distribution and water content dynamic in a pellet mill production process and comparative sieving performance of horizontal 3.15-mm mesh and 3.15-mm hole sieves. Biomass Conv. Bioref. 11, 1621–1632 (2021). https://doi.org/10.1007/s13399-019-00544-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00544-9

Keywords

Navigation