Skip to main content

Advertisement

Log in

Hydrothermal carbonization of various lignocellulosic biomass

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

As a non-food, renewable energy resource, lignocellulosic biomass can be used for reducing greenhouse gas emissions. Hydrothermal carbonization (HTC) is a process to prepare the lignocellulosic biomass for subsequent thermochemical conversion. Biomass is reacted in hot compressed water at temperatures between 200 and 275 °C and at pressures sufficient to maintain liquid water. HTC was performed on corn stover, rice hulls, Tahoe mix (Jeffrey pine and white fir), switch grass, and Loblolly pine. These biomass sources encompass a variety of types, including a primary agricultural residue, a secondary agricultural residue, a forest product removed to reduce wildfires, a primary energy crop, and a primary forest crop. HTC reaction temperature was found to be the process variable with the greatest effect. For the five biomass studied, hydrochar mass yields were found to decrease with increasing reaction temperature, while higher heating values increased with increasing reaction temperature. Differences in these results among biomass sources were found to correlate with their original hemicellulose, lignin, aqueous soluble, and ash contents. These components appeared to be observable in scanning electron microscope images of hydrochar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Perlack RD, Stokes BJ (2011) U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. In: ORNL/TM-2011/224. (ed). U.S. Department of Energy., Oak Ridge National Laboratory, Oak Ridge, TN., pp. 227

  2. Zuwala J, Sciazko M (2010) Full-scale co-firing trial tests of sawdust and bio-waste in pulverized coal-fired 230 t/h steam boiler. Biomass Bioenergy 34:1165–1174

    Article  Google Scholar 

  3. Bridgwater AV, Double JM (1991) Production costs of liquid fuels from biomass. Fuel 70:1209–1224

    Article  Google Scholar 

  4. Yan W, Acharjee TC, Coronella CJ, Vasquez VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustain Energy 28:435–440

    Article  Google Scholar 

  5. Sadaka S, Negi S (2009) Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ Prog Sustain Energy 28:427–434

    Article  Google Scholar 

  6. Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici M-M, Fühner C, Bens O, Kern J, Emmerich K-H (2010) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biogeosciences 2:71–106

    Google Scholar 

  7. Acharjee TC, Coronella CJ, Vasquez VR (2011) Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresour Technol 102:4849–4854

    Article  Google Scholar 

  8. Arvaniti E, Bjerre AB, Schmidt JE (2012) Wet oxidation pretreatment of rape straw for ethanol production. Biomass Bioenergy 39:94–105

    Article  Google Scholar 

  9. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Bioref 4:160–177

    Article  Google Scholar 

  10. Knezevic D, van Swaaij W, Kersten S (2010) Hydrothermal conversion of biomass. II. Conversion of wood, pyrolysis oil, and glucose in hot compressed water. Ind Eng Chem Res 49:104–112

    Article  Google Scholar 

  11. Lu X, Yamauchi K, Phaiboonsilpa N, Saka S (2009) Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. J Wood Sci 55:367–375

    Article  Google Scholar 

  12. Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993

    Article  Google Scholar 

  13. Lynam JG, Coronella CJ, Yan W, Reza MT, Vasquez VR (2011) Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 102:6192–6199

    Article  Google Scholar 

  14. Ando H, Sakaki T, Kokusho T, Shibata M, Uemura Y, Hatate Y (2000) Decomposition behavior of plant biomass in hot-compressed water. Ind Eng Chem Res 39:3688–3693

    Article  Google Scholar 

  15. Yu Y, Lou X, Wu HW (2008) Some recent advances in hydrolysis of biomass in hot-compressed, water and its comparisons with other hydrolysis methods. Energy Fuels 22:46–60

    Article  Google Scholar 

  16. Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19:797–841

    Article  Google Scholar 

  17. Petersen MO, Larsen J, Thomsen MH (2009) Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass Bioenergy 33:834–840

    Article  Google Scholar 

  18. Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

  19. Zhang B, Huang HJ, Ramaswamy S (2008) Reaction kinetics of the hydrothermal treatment of lignin. Appl Biochem Biotechnol 147:119–131

    Article  Google Scholar 

  20. Reza MT, Yan W, Uddin MH, Lynam JG, Hoekman SK, Coronella CJ, Vasquez VR (2013) Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresour Technol 139:161–169

    Article  Google Scholar 

  21. Reza MT, Lynam JG, Vasquez VR, Coronella CJ (2012) Pelletization of biochar from hydrothermally carbonized wood. Environ Prog Sustain Energy 31:225–234

    Article  Google Scholar 

  22. Goering HK, Soest PJV (1970) Forage fiber analyses U.S. Agricultural Research Service, pp. 1–3

  23. Ehrman T (1994) Standard Method for Ash in Biomass. Golden, CO pp. 20

  24. Garcia R, Pizarro C, Lavin AG, Bueno JL (2013) Biomass proximate analysis using thermogravimetry. Bioresour Technol 139:1–4

    Article  Google Scholar 

  25. Hicks RC, Turner VK (1999) Fundamental concepts in the design of experiments. Oxford University Press, New York

    Google Scholar 

  26. Roman S, Nabais JMV, Laginhas C, Ledesma B, Gonzalez JF (2012) Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol 103:78–83

    Article  Google Scholar 

  27. Gao Y, Wang XH, Wang J, Li XP, Cheng JJ, Yang HP, Chen HP (2013) Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 58:376–383

    Article  Google Scholar 

  28. Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ, von Keitz MG, Valentas KJ (2010) Hydrothermal carbonization of microalgae. Biomass Bioenergy 34:875–882

    Article  Google Scholar 

  29. Heilmann SM, Jader LR, Sadowsky MJ, Schendel FJ, von Keitz MG, Valentas KJ (2011) Hydrothermal carbonization of distiller’s grains. Biomass Bioenergy 35:2526–2533

    Article  Google Scholar 

  30. Rogalinski T, Ingram T, Brunner G (2008) Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. J Supercrit Fluids 47:54–63

    Article  Google Scholar 

  31. Peterson AA, Vogel F, Lachance RP, Froling M, Antal MJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65

    Article  Google Scholar 

  32. Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Als Roh-Werkst 57:191–202

    Article  Google Scholar 

  33. Grenman H, Eranen K, Krogell J, Willfor S, Salmi T, Murzin DY (2011) Kinetics of aqueous extraction of hemicelluloses from spruce in an intensified reactor system. Ind Eng Chem Res 50:3818–3828

    Article  Google Scholar 

  34. Reza, M; Uddin, M; Lynam, J; Hoekman, S; Coronella C.(2014): Hydrothermal carbonization of loblolly pine: reaction chemistry and water balance. Biomass Conversion and Biorefinery. 3 (January 2014): 113–126 Online: http://dx.doi.org/10.1007/s13399-014-0115-9

  35. Reza MT, Lynam JG, Uddin MH, Coronella CJ (2013) Hydrothermal carbonization: Fate of inorganics. Biomass Bioenergy 49:86–94

    Article  Google Scholar 

  36. Lynam JG, Reza MT, Vasquez VR, Coronella CJ (2012) Pretreatment of rice hulls by ionic liquid dissolution. Bioresour Technol 114:629–636

    Article  Google Scholar 

  37. Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 25:1802–1810

    Article  Google Scholar 

  38. Matsumura Y, Yanachi S, Yoshida T (2006) Glucose decomposition kinetics in water at 25 MPa in the temperature range of 448–673 K. Ind Eng Chem Res 45:1875–1879

    Article  Google Scholar 

  39. Sasaki M, Adschiri T, Arai K (2003) Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresour Technol 86:301–304

    Article  Google Scholar 

  40. Demirbas A (2005) Estimating of structural composition of wood and non-wood biomass samples. Energy Sources 27:761–767

    Article  Google Scholar 

  41. Yu Y, Wu HW (2010) Evolution of primary liquid products and evidence of in situ structural changes in cellulose with conversion during hydrolysis in hot-compressed water. Ind Eng Chem Res 49:3919–3925

    Article  MathSciNet  Google Scholar 

  42. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  Google Scholar 

  43. Verevkin SP, Emel’yanenko VN, Stepurko EN, Ralys RV, Zaitsau DH, Stark A (2009) Biomass-derived platform chemicals: Thermodynamic studies on the conversion of 5-hydroxymethylfurfural into bulk intermediates. Ind Eng Chem Res 48:10087–10093

    Article  Google Scholar 

  44. Salanti A, Zoia L, Tolppa EL, Orlandi M (2012) Chromatographic detection of lignin-carbohydrate complexes in annual plants by derivatization in ionic liquid. Biomacromolecules 13:445–454

    Article  Google Scholar 

  45. Hu B, Yu SH, Wang K, Liu L, Xu XW (2008) Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process. Dalton Trans.:5414–5423

  46. Kobayashi N, Okada N, Hatano S, Itaya Y, Mori S (2009) Study on biomass hydrothermal treatment in a continuous slurry-flow type reactor. Kag Kog Ronbunshu 35:459–464

    Article  Google Scholar 

  47. Uddin MH, Reza MT, Lynam JG, Coronella CJ (2013) Effects of water recycling in hydrothermal carbonization. Environ. Prog. Sustain. Energy

  48. Stemann J, Putschew A, Ziegler F (2013) Hydrothermal carbonization: Process water characterization and effects of water recirculation. Bioresour Technol 143:139–146

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support by Department of Energy (Contract Number: DE-FG36-01GO11082). The authors acknowledge meaningful conversations with project partners, including Larry Felix of the Gas Technology Institute, and Craig Einfeldt of Changing World Technologies. Experimental work of Mr. Tapas Acharjee and Mr. Jason Hastings is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Coronella.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynam, J.G., Reza, M.T., Yan, W. et al. Hydrothermal carbonization of various lignocellulosic biomass. Biomass Conv. Bioref. 5, 173–181 (2015). https://doi.org/10.1007/s13399-014-0137-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-014-0137-3

Keywords

Navigation