Skip to main content
Log in

New consistent exponentiality tests based on V-empirical Laplace transforms with comparison of efficiencies

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

We present new consistent goodness-of-fit tests for exponential distribution, based on the Desu characterization. The test statistics represent the weighted \(L^2\) and \(L^{\infty }\) distances between appropriate V-empirical Laplace transforms of random variables that appear in the characterization. In addition, we perform an extensive comparison of Bahadur efficiencies of different recent and classical exponentiality tests. We also present the empirical powers of new tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alizadeh Noughabi, H., Arghami, N.R.: Testing exponentiality based on characterizations of the exponential distribution. J. Stat. Comput. Simul. 81(11), 1641–1651 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allison, J., Santana, L.: On a data-dependent choice of the tuning parameter appearing in certain goodness-of-fit tests. J. Stat. Comput. Simul. 85(16), 3276–3288 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allison, J., Santana, L., Smit, N., Visagie, I.: An ‘apples to apples’ comparison of various tests for exponentiality. Comput. Stat. 32(4), 1241–1283 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, B.C., Villasenor, J.A.: Exponential characterizations motivated by the structure of order statistics in samples of size two. Stat. Prob. Lett. 83(2), 596–601 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bahadur, R.R.: On the asymptotic efficiency of tests and estimates. Sankhyā Indian J. Stat. 22(3/4), 229–252 (1960)

    MathSciNet  MATH  Google Scholar 

  6. Bahadur, R.R.: Rates of convergence of estimates and test statistics. Ann. Math. Stat. 38(2), 303–324 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baringhaus, L., Henze, N.: A class of consistent tests for exponentiality based on the empirical Laplace transform. Ann. Inst. Stat. Math. 43(3), 551–564 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Billingsley, P.: Convergence of Probability Measures. Wiley (1968)

  9. Božin, V., Milošević, B., Nikitin, Ya.. Yu.., Obradović, M.: New characterization based symmetry tests. Bull. Malays. Math. Sci. Soc. 43(1), 297–320 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cox, D., Oakes, D.: Analysis of Survival Data. Chapman and Hall, New York (1984)

    Google Scholar 

  11. Cuparić, M., Milošević, B., Obradović, M.: New \({L}^2\)-type exponentiality tests. SORT-Stat. Oper. Res. Trans. 43(1), 25–50 (2019)

    MATH  Google Scholar 

  12. Desu, M.M.: A characterization of the exponential distribution by order statistics. Ann. Math. Stat. 42(2), 837–838 (1971)

    Article  MATH  Google Scholar 

  13. Epps, T., Pulley, L.: A test of exponentiality vs. monotone-hazard alternatives derived from the empirical characteristic function. J. R. Stat. Soc. Ser. B (Methodol.) 48(2), 206–213 (1986)

    MathSciNet  MATH  Google Scholar 

  14. Gail, M., Gastwirth, J.: A scale-free goodness-of-fit test for the exponential distribution based on the Gini statistic. J. R. Stat. Soc. Ser. B (Methodol.) 40(3), 350–357 (1978)

    MathSciNet  MATH  Google Scholar 

  15. Grané, A., Fortiana, J.: A location-and scale-free goodness-of-fit statistic for the exponential distribution based on maximum correlations. Statistics 43(1), 1–12 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grané, A., Fortiana, J.: A directional test of exponentiality based on maximum correlations. Metrika 73(2), 255–274 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Henze, N.: A new flexible class of omnibus tests for exponentiality. Commun. Stat. Theory Methods 22(1), 115–133 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Henze, N., Meintanis, S.: Tests of fit for exponentiality based on the empirical Laplace transform. Stat. J. Theor. Appl. Stat. 36(2), 147–161 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Henze, N., Meintanis, S.G.: Goodness-of-fit tests based on a new characterization of the exponential distribution. Commun. Stat. Theory Methods 31(9), 1479–1497 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Henze, N., Meintanis, S.G.: Recent and classical tests for exponentiality: a partial review with comparisons. Metrika 61(1), 29–45 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, J.S.: On a theorem of Ahsanullah and Rahman. J. Appl. Probab. 11(1), 216–218 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Iverson, H., Randles, R.: The effects on convergence of substituting parameter estimates into U-statistics and other families of statistics. Probab. Theory Relat. Fields 81(3), 453–471 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jovanović, M., Milošević, B., Nikitin, Ya.. Yu.., Obradović, M., Volkova, KYu.: Tests of exponentiality based on Arnold–Villasenor characterization and their efficiencies. Comput. Stat. Data Anal. 90, 100–113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klar, B.: On a test for exponentiality against Laplace order dominance. Statistics 37(6), 505–515 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Klar, B.: Tests for exponentiality against the M and LM-Classes of life distributions. TEST 14(2), 543–565 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Korolyuk, V.S., Borovskikh, Y.V.: Theory of U-statistics. Kluwer, Dordrecht (1994)

    Book  MATH  Google Scholar 

  27. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes. Springer Science and Business Media (2013)

  28. Marcus, M.B., Shepp, L.: Sample behavior of Gaussian processes. In: Proc. of the Sixth Berkeley Symposium on Math. Statist. and Prob, vol. 2, pp. 423–421 (1972)

  29. Meintanis, S.G.: Tests for generalized exponential laws based on the empirical Mellin transform. J. Stat. Comput. Simul. 78(11), 1077–1085 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Meintanis, S.G., Nikitin, Ya.. Yu.., Tchirina, A.: Testing exponentiality against a class of alternatives which includes the RNBUE distributions based on the empirical Laplace transform. J. Math. Sci. 145(2), 4871–4879 (2007)

    Article  MathSciNet  Google Scholar 

  31. Milošević, B.: Asymptotic efficiency of new exponentiality tests based on a characterization. Metrika 79(2), 221–236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Milošević, B., Obradović, M.: New class of exponentiality tests based on U-empirical Laplace transform. Stat. Pap. 57(4), 977–990 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Milošević, B., Obradović, M.: Some characterization based exponentiality tests and their Bahadur efficiencies. Publications de L’Institut Mathematique 100(114), 107–117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Milošević, B., Obradović, M.: Some characterizations of the exponential distribution based on order statistics. Appl. Anal. Discrete Math. 10(2), 394–407 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Moran, P.: The random division of an interval—Part II. J. R. Stat. Soc. Ser. B (Methodol.) 13(1), 147–150 (1951)

    MATH  Google Scholar 

  36. Nikitin, Y.Y.: Asymptotic Efficiency of Nonparametric Tests. Cambridge University Press, New York (1995)

    Book  MATH  Google Scholar 

  37. Nikitin, Y.Y.: Large deviations of U-empirical Kolmogorov–Smirnov tests and their efficiency. J. Nonparametr. Stat. 22(5), 649–668 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nikitin, Y.Y.: Tests based on characterizations, and their efficiencies: a survey. Acta et Commentationes Universitatis Tartuensis de Mathematica 21(1), 4–24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nikitin, Y.Y., Peaucelle, I.: Efficiency and local optimality of nonparametric tests based on U- and V-statistics. Metron 62(2), 185–200 (2004)

    MathSciNet  MATH  Google Scholar 

  40. Nikitin, Y.Y., Tchirina, A.V.: Bahadur efficiency and local optimality of a test for the exponential distribution based on the Gini statistic. J. Ital. Stat. Soc. 5(1), 163–175 (1996)

    Article  MATH  Google Scholar 

  41. Nikitin, Y.Y., Tchirina, A.V.: Lilliefors test for exponentiality: large deviations, asymptotic efficiency, and conditions of local optimality. Math. Methods Stat. 16(1), 16–24 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nikitin, Y.Y., Volkova, K.Y.: Asymptotic efficiency of exponentiality tests based on order statistics characterization. Georgian Math. J. 17(4), 749–763 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nikitin, YY. and K. Y. Volkova,: Efficiency of exponentiality tests based on a special property of exponential distribution. Math. Methods Stat. 25(1), 54–66 (2016)

  44. Novoa-Muñoz, F., Jiménez-Gamero, M.D.: Testing for the bivariate Poisson distribution. Metrika 77(6), 771–793 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Obradović, M.: Three characterizations of exponential distribution involving median of sample of size three. J. Stat. Theory Appl. 14(3), 257–264 (2015)

    Article  MathSciNet  Google Scholar 

  46. Puri, P.S., Rubin, H.: A characterization based on the absolute difference of two iid random variables. Ann. Math. Stat. 41(6), 2113–2122 (1970)

    Article  MATH  Google Scholar 

  47. Serfling, R.: Approximation Theorems of Mathematical Statistics, vol. 162. Wiley, New York (2009)

    MATH  Google Scholar 

  48. Strzalkowska-Kominiak, E., Grané, A.: Goodness-of-fit test for randomly censored data based on maximum correlation. SORT Stat. Oper. Res. Trans. 41(1), 119–138 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Tchirina, A.: Bahadur efficiency and local optimality of a test for exponentiality based on the Moran statistics. J. Math. Sci. 127(1), 1812–1819 (2005)

    Article  MathSciNet  Google Scholar 

  50. Tenreiro, C.: On the automatic selection of the tuning parameter appearing in certain families of goodness-of-fit tests. J. Stat. Comput. Simul. 89(10), 1780–1797 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Torabi, H., Montazeri, N.H., Grané, A.: A wide review on exponentiality tests and two competitive proposals with application on reliability. J. Stat. Comput. Simul. 88(1), 108–139 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Volkova, K.Y.: Tests of the exponentiality based on properties of order statistics 1. In: 6th St. Petersburg Workshop on Simulation, pp. 761–764 (2009)

  53. Volkova, K.Y.: Goodness-of-fit tests for exponentiality based on Yanev–Chakraborty characterization and their efficiencies. In: Proceedings of the 19th European Young Statisticians Meeting, Prague, pp. 156–159 (2015)

  54. Yanev, G.P., Chakraborty, S.: Characterizations of exponential distribution based on sample of size three. Pliska Studia Mathematica Bulgarica 22(1), 237p–244p (2013)

    MathSciNet  MATH  Google Scholar 

  55. Zolotarev, V.M.: Concerning a certain probability problem. Theory Probab. Appl. 6(2), 201–204 (1961)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewer for his useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojana Milošević.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of M. Cuparić and B. Milošević is supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Appendices

Appendix A: Proofs of theorems

Proof (Theorem 2)

Our statistic \(M^{{\mathcal {D}}}_{n,a}({\widehat{\lambda }}_n)\) can be rewritten as

$$\begin{aligned} \begin{aligned} M^{{\mathcal {D}}}_{n,a}({\widehat{\lambda }}_n)&=\int _0^{\infty }\left( \frac{1}{n^{2}}\sum _{i_1,i_2=1}^n\xi (X_{i_1},X_{i_2},t;a{\widehat{\lambda }}_n)\right) ^2e^{-at}dt\\&=\int _0^{\infty }V_n(t,{\widehat{\lambda }}_n)^2e^{-at}dt. \end{aligned} \end{aligned}$$

Here \(V_n(t;{\widehat{\lambda }}_n)\), for each \(t>0\), is a V-statistic of order 2 with an estimated parameter, and kernel

$$\begin{aligned} \xi (x_{1},x_{2},t;a,{\widehat{\lambda }}_n)=\frac{1}{2}\left( e^{-t{\hat{\lambda }}_nx_1}+e^{-t{\hat{\lambda }}_nx_2}-e^{-t{\hat{\lambda }}_n2\min (x_1,x_2)}\right) . \end{aligned}$$

Since the function \(\xi (x_{1},x_{2},t;a,\gamma )\) is continuously differentiable with respect to \(\gamma \) at the point \(\gamma =\lambda \) we may apply the mean value theorem. We have

$$\begin{aligned} V_n(t;{\widehat{\lambda }}_n)=V_n(t;\lambda )+({\widehat{\lambda }}_n-\lambda )\frac{\partial V_n(t;\gamma )}{\partial \gamma }|_{\gamma =\lambda ^*}, \end{aligned}$$
(13)

for some \(\lambda ^*\) between \(\lambda \) and \({\widehat{\lambda }}_n\). From the Law of large numbers for V-statistics [47, 6.4.2.], the partial derivative \(\frac{\partial V_n(t;\gamma )}{\partial \gamma }\) converges to

$$\begin{aligned} E\left( 2t\min \{X_1,X_2\}e^{-2t\min \{X_{1},X_{2}\}\gamma }-tX_{1}e^{-tX_{1}\gamma }\right) =0. \end{aligned}$$
(14)

Since \(\sqrt{n}({\widehat{\lambda }}_n-\lambda )\) is stochastically bounded, it follows that statistics \(\sqrt{n}V_n(t;{\widehat{\lambda }}_n)\) and \(\sqrt{n}V_n(t;1)\) are asymptotically equally distributed. Therefore, \(nM^{{\mathcal {D}}}_{n,a}({\widehat{\lambda }}_n)\) and \(nM^{{\mathcal {D}}}_{n,a}(\lambda )\) will have the same limiting distribution. Hence we need to derive limiting distribution of \(nM^{{\mathcal {D}}}_{n,a}(\lambda )\).

First notice that \(M^{{\mathcal {D}}}_{n,a}(\lambda )\) is a V-statistic with symmetric kernel H. Also, since the distribution of \(M^{{\mathcal {D}}}_{n,a}(\lambda )\) does not depend on \(\lambda \) we may assume that \(\lambda =1.\)

It is easy to show that its first projection of kernel H on \(X_1\) is equal to zero. After some calculations, we obtain that its second projection on \((X_1,X_2)\) is given by

$$\begin{aligned} {\widetilde{h}}_2(u,v;a)= & {} E(H(X_1,X_2,X_3,X_4;a,1)|X_1=u,X_2=v)\\= & {} \frac{1}{6}\bigg (3+\frac{1}{a+u+v}-\frac{2e^{-u}}{a+2u+v}-\frac{2e^{-v}}{a+u+2v}-(4-a)e^aEi(-a)\\&+e^\frac{a+v}{2}\Big (Ei\big (-\frac{a+v}{2}\big )-Ei\big (-\frac{a+2u+v}{2}\big )\Big )+e^{a+u}\Big (4Ei(-a-2u)\\&\quad -Ei(-a-u)\Big ) +e^\frac{a+u}{2}\Big (Ei\big (-\frac{a+u}{2}\big )-Ei\big (-\frac{a+u+2v}{2}\big )\Big ) \\&\quad +e^{a+v}\Big (4Ei(-a-2v)-Ei(-a-v)\Big ) -2(e^{-u}+e^{-v})\\&\quad +e^{\frac{a}{2}}\Big (-(4+a+2u)Ei(-\frac{a}{2}-u)+(a+4)Ei(-\frac{a}{2})\\&\quad +(a+2(2+u+v))Ei(-\frac{a}{2}-u-v) -(4+a+2v)Ei(-\frac{a}{2}-v)\Big )\\&\quad +\frac{e^{-u-v}}{a+2(u+v)}(2a+4(1+u+v))\bigg ), \end{aligned}$$

where \(\text {Ei}(x)=-\int _{-x}^\infty \frac{e^{-t}}{t}dt\) is the exponential integral. The function \({\widetilde{h}}_2\) is non-constant for any \(a>0\). Hence, kernel h is degenerate with degree 2.

Since the kernel H is bounded and degenerate, from the theorem on asymptotic distribution of U-statistics with degenerate kernels [26, Corollary 4.4.2], and the Hoeffding representation of V-statistics, we get that, \(M^{{\mathcal {D}}}_{n,a}(1)\), being a V-statistic of degree 2, has the following asymptotic distribution

$$\begin{aligned} nM^{{\mathcal {D}}}_{n,a}(1)\overset{d}{\rightarrow }6\sum _{k=1}^\infty \delta _kW^2_k, \end{aligned}$$
(15)

where \(\{\delta _k\}\) are the eigenvalues of the integral operator \({\mathcal {M}}_a\) defined by

$$\begin{aligned} {\mathcal {M}}_{a}q(x)=\int _{0}^{+\infty }{\widetilde{h}}_2(x,y;a)q(y)dF(y), \end{aligned}$$
(16)

and \(\{W_{k}\}\) is the sequence of i.i.d. standard Gaussian random variables. \(\square \)

Proof (Theorem 3)

The test statistic can be represented as

$$\begin{aligned} L^{{\mathcal {D}}}_{n,a}= \sup \limits _{t\ge 0}|V_n(t;{\widehat{\lambda }}_n)e^{-at}|, \end{aligned}$$
(17)

where \(\{V_n(t;{\widehat{\lambda }}_n)\}\) is a V-empirical process introduced in the proof of Theorem 2.

Substituting \(s=e^{-t}\) in (17) we can express our statistic as

$$\begin{aligned} L^{{\mathcal {D}}}_{n,a}=\sup _{s\in (0,1)}|V_{n}(-\ln s;{\hat{\lambda }}_n)s^a|, \end{aligned}$$

thus obtaining, as a core of the statistic, the process \(V_{n}(-\ln s;{\hat{\lambda }}_n)\), \(s\in (0,1)\), defined on C[0, 1] equipped with supremum norm.

Next we show that the difference between \(\sqrt{n}L^{{\mathcal {D}}}_{n,a}\) and \(\sqrt{n}\sup _{s\in (0,1)}|V_{n}(-\ln s;\lambda )s^a|\) (for a fixed \(\lambda \)) tends uniformly to zero and proceed finding the limiting distribution of the latter.

This is, taking into account (13), equivalent to \(\lim _{n\rightarrow \infty }\sup _{s\in (0,1)}R_n(s)=0\), where

$$\begin{aligned} R_n(s)&=s^a\Big |\frac{1}{n^2}\sum _{i,j}\Big (-2\ln s\min \{X_1,X_2\}s^{2\min \{X_{1},X_{2}\}\gamma }+\ln s X_{1}s^{X_{1}\gamma }\Big )\Big |\\&= -\ln s\cdot s^a \Big |\frac{1}{n^2}\sum _{i,j}\Big (2\min \{X_1,X_2\}s^{2\min \{X_{1},X_{2}\}\gamma }- X_{1}s^{X_{1}\gamma }\Big )\Big |. \end{aligned}$$

From (14) we know that the expression in the absolute parentheses tends to zero for each s, and using [44, Lemma 1] we get that its supremum also tends to zero. Since \(-\ln s\cdot s^a\) is bounded function, \(\sup _s R_n(s)\) tends also to zero.

Since, for a fixed s, \(\sqrt{n}V_n(-\ln s;\lambda )\) is a non-degenerate V-statistic, \(\sqrt{n}V_n(-\ln s;\lambda )\) is asymptotically normally distributed. The same holds for finite-dimensional distributions of the process \(\sqrt{n}V_n(-\ln s;\lambda )\). In addition, it can be shown that \(\sqrt{n}V_n(-\ln s;\lambda )\) satisfies conditions from Billingsley [8, Theorem 12.3], and is, therefore, tight in C[0, 1]. Therefore it converges weakly to a zero mean Gaussian process \(\{\eta ^\star (s)\}\) with covariance function

$$\begin{aligned} \begin{aligned} K^\star (u,v)=K(-\ln {u},-\ln {v}), \end{aligned} \end{aligned}$$

where K is defined in (3).

Since the supremum is continuous on C[0, 1], using the continuous mapping theorem we get that \(\sqrt{n}\sup _{s\in (0,1)}|V_{n}(-\ln s;\lambda )s^a|\) converges to \(\sup _{s\in (0,1)}|\eta ^\star (s)s^a|\), which is the same as \(\sup _{t>0}|\eta (t)e^{-at}|\). This completes the proof. \(\square \)

Proof (Lemma 4)

Using the result of Zolotarev [55], the logarithmic tail behavior of limiting distribution function of \({\widetilde{M}}_{n,a}^{{\mathcal {D}}}({\widehat{\lambda }}_n)=\sqrt{nM^{{\mathcal {D}}}_{n,a}({\widehat{\lambda }}_n)}\) is

$$\begin{aligned} \ln (1-F_{{\widetilde{M}}_a}(t))=-\frac{t^2}{12\delta _1}+o(t^2),\;\;t\rightarrow \infty . \end{aligned}$$

Therefore, \(a_{{\widetilde{M}}_a}=\frac{1}{6\delta _1}.\) The limit in probability \(P_{\theta }\) of \({\widetilde{M}}_{n,a}({\widehat{\lambda }}_n)/\sqrt{n}\) is

$$\begin{aligned} b_{{\widetilde{M}}_{a}}=\sqrt{b_{M}(\theta )}. \end{aligned}$$

The expression for \(b_M(\theta )\) is derived in the following lemma.

Lemma A1

For a given alternative density \(g(x;\theta )\) whose distribution belongs to \({\mathcal {G}}\), we have that the limit in probability of the statistic \(M^{{\mathcal {D}}}_{n,a}({\widehat{\lambda }}_n)\) is

$$\begin{aligned} b_M(\theta )=6\int \limits _{0}^{\infty }\int \limits _{0}^{\infty }{\widetilde{h}}_2(x,y;a)g'_{\theta }(x;0)g'_{\theta }(y;0)dxdy\cdot \theta ^2+o(\theta ^2), \theta \rightarrow 0. \end{aligned}$$

Proof

For brevity, denote \({\varvec{x}}=(x_1,x_2,x_3,x_{4})\) and \({\varvec{G}}({\varvec{x}};\theta )=\prod _{i=1}^{4}G(x_i;\theta )\). Since \({\overline{X}}_n\) converges almost surely to its expected value \(\mu (\theta )\), using the Law of large numbers for V-statistics with estimated parameters (see [22]), \(M^{{\mathcal {D}}}_{n,a}({\widehat{\lambda }}_n)\) converges to

$$\begin{aligned} \begin{aligned} b_M(\theta )\!&=\!E_{\theta }(H({\varvec{X}},a;\mu (\theta )))\\&\!=\!\int \limits _{{(R^+)}^{4}}\!\Big (\!\frac{\mu (\theta )}{2\min \{x_{1},x_{2}\}\!+\!2\min \{x_{3},x_{4}\}\!+\!a\mu (\theta )}-\!\frac{\mu (\theta )}{x_{1}\!+\!2\min \{x_{3},x_{4}\}\!+\!a\mu (\theta )}\\&\quad \!-\!\frac{\mu (\theta )}{x_{3}+2\min \{x_{1},x_{2}\}+a\mu (\theta )}\!+\!\frac{\mu (\theta )}{x_1+x_{3}+a\mu (\theta )}\Big )d{\varvec{G}}({\varvec{x}};\theta ). \end{aligned} \end{aligned}$$

We may assume that \(\mu (0)=1\) since the test statistic is ancillary for \(\lambda \) under the null hypothesis. After some calculations we get that \(b'_M(0)=0\) and that

$$\begin{aligned} \begin{aligned} b''(0)&=\int _{(R^+)^{4}}H({\varvec{x}},a;1)\frac{\partial ^2}{\partial \theta ^2}d{\varvec{G}}({\varvec{x}},0) =6\int _{(R^+)^2}{\widetilde{h}}_2(x,y)g'_{\theta }(x;0)g'_{\theta }(y;0)dxdy. \end{aligned} \end{aligned}$$

Expanding \(b_M(\theta )\) into the Maclaurin series

$$\begin{aligned} b_M(\theta )= b_M(0)+b'_M(0)\cdot \theta +b''_M(0)\theta ^2+o(\theta ^2),\;\theta \rightarrow 0, \end{aligned}$$

we complete the proof. \(\square \)

Now we pass to the statistic \(L^{{\mathcal {D}}}_n.\) The tail behaviour of the random variable \(\sup _{t>0}|n_{t}|\) is equal to the inverse of supremum of its covariance function, i.e. the \(a_L=\frac{1}{\sup _{t>0}K(t,t)}\) (see [27, 36]).

Similarly like before, since \({\overline{X}}_n\) converges almost surely to its expected value \(\mu (\theta )\), using the Law of large numbers for V-statistics with estimated parameters [22], \(V_n(t,a;{\hat{\lambda }})e^{-at}\) converges to

$$\begin{aligned} \begin{aligned} b_L(\theta ;t)&=E_{\theta }(\varPhi (X_1,X_2;t,a,\mu (\theta ))). \end{aligned} \end{aligned}$$

Expanding \(b_L(\theta ;t)\) in the Maclaurin series we obtain

$$\begin{aligned} b_L(\theta ;t)=2\int _{0}^{\infty }{\widetilde{\varphi }}_1(x,t;a)g'_{\theta }(x;0)dx\cdot \theta +o(\theta ), \end{aligned}$$

where \({\widetilde{\varphi }}_1(x,t;a)=E(\varPhi (X_1,X_2,t;a,1)|X_1=x_1).\)

Since V-empirical Laplace transforms are monotonous functions, a Glivenko-Cantelli-type theorem holds, see Novoa-Muñoz and Jiménez-Gamero [44, Lemma 1]. Hence, the limit in probability under the alternative for statistics \(L_{n,a}^{{\mathcal {D}}}\) is equal to \(\sup _{t\ge 0}|b_L(\theta ;t)|\). Inserting this into the expression for the Bahadur slope completes the proof. \(\square \)

Appendix B: Bahadur approximate slopes

Proof

Approximate local Bahadur slope of statistics EP and CO

Those statistics can be represented as

$$\begin{aligned} T_n=\frac{1}{n}\sum _{i=1}^n\varPhi (X;{\hat{\mu }}), \end{aligned}$$

where \(\varPhi (x;\gamma )\) is continuously differentiable with respect to \(\gamma \) at point \(\gamma =\mu .\) It was shown that the limiting distribution of \(\sqrt{n}T_n\) is zero mean normal with variance \(\sigma ^2_{\varPhi }\) (see [10, 13]). Hence, the coefficient \(a_T\) is equal to \(\frac{1}{\sigma ^2_{\varPhi }}.\)

Further, we have

$$\begin{aligned} b(\theta )= & {} E_{\theta }(\varPhi (X;\mu (\theta )))=\int \limits _0^\infty \varPhi (x;\mu (\theta ))dG(x;\theta ) \\ b'(\theta )= & {} \int \limits _0^\infty \frac{\partial }{\partial \mu }\varPhi (x;\mu (\theta ))\frac{\partial }{\partial \theta }\mu (\theta )dG(x;\theta )+\int \limits _0^\infty \varPhi (x;\mu (\theta ))\frac{\partial }{\partial \theta }dG(x;\theta ). \end{aligned}$$

Then it holds that

$$\begin{aligned} \begin{aligned} b(\theta )&=b(0)+b'(0)\theta +o(\theta )\\&=\Bigg (\mu '(0)\int \limits _0^\infty \varPhi '(x;1)g(x;0)dx+\int \limits _0^\infty \varPhi (x;1)g'(x;0)dx)\bigg )\theta +o(\theta ). \end{aligned} \end{aligned}$$

From this we obtain the expression for \(c_T(\theta ).\) \(\square \)

Proof

Approximate local Bahadur slope of statistics BH, HE, Wn, HM, \(\omega ^2\) and AD

Let T be the one of considered statistics. It was shown that the limiting distribution of \(nT_n\) is \(\sum _{i=1}^{\infty }\delta _iW_i^2,\) where \(\{W_i\}\) is the sequence of i.i.d. standard normal variables and \(\{\delta _i\}\) the sequence of eigenvalues of certain covariance operator. Using the result of Zolotarev in [55], we have that the logarithmic tail behavior of limiting distribution function of \({\widetilde{T}}_n=\sqrt{n T_n}\) is

$$\begin{aligned} \ln (1-F_{{\widetilde{T}}}(s))=-\frac{s^2}{2\delta _1}+o(s^2), s\rightarrow \infty . \end{aligned}$$

Next, the limit in probability of \({\widetilde{T}}_n/\sqrt{n}\) is \(b_{{\widetilde{T}}}(\theta )=\sqrt{b_T(\theta )}\). Statistic \(T_n\) can be represented as

$$\begin{aligned} T_{n}=\frac{1}{n^2}\sum _{k,j=1}^n\varPhi (X_k,X_j;{\hat{\mu }}). \end{aligned}$$

As before, we may assume that \(\mu (0)=1\). Since the sample mean converges almost surely to its expected value, by using the Law of large numbers for V-statistics with estimated parameters (see [22]), we can conclude that the limit in the probability of statistic \(T_n\) is equal to the one of

$$\begin{aligned} b_T(\theta )=E_{\theta }(\varPhi (X_1,X_2;\mu (\theta )))=\int \limits _{0}^\infty \int \limits _{0}^\infty \varPhi (x,y;\mu (\theta ))g(x;\theta )g(y;\theta )dxdy. \end{aligned}$$

We get that \(b_T'(0)=0\) and that

$$\begin{aligned} \begin{aligned} b_T''(0)&\!=\!2\int \limits _{0}^\infty \!\int \limits _{0}^\infty \varPhi (x,y;1)g'_{\theta }(x;0)g'_{\theta }(y;0)dxdy\\&\quad + 4\mu '(0)\int \limits _{0}^\infty \!\int \limits _{0}^\infty \varPhi '(x,y;1)g(x;0)g'_{\theta }(y;0)dxdy\\&\quad +(\mu '(0))^2\int \limits _{0}^\infty \int \limits _{0}^\infty \varPhi ''(x,y;1)g(x;0)g(y;0)dxdy, \end{aligned} \end{aligned}$$

Expanding \(b_T(\theta )\) into Maclaurin series we obtain expression for \(b_T\). \(\square \)

Appendix C: Tables of efficiencies

Table 3 Relative Bahadur efficiency with respect to LRT

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuparić, M., Milošević, B. & Obradović, M. New consistent exponentiality tests based on V-empirical Laplace transforms with comparison of efficiencies. RACSAM 116, 42 (2022). https://doi.org/10.1007/s13398-021-01184-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01184-3

Keywords

Mathematics Subject Classification

Navigation