Skip to main content
Log in

Abstract

We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann–Liouville type. We then solve a Dirichlet type Sturm–Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riemann–Liouville operator on a finite interval where the boundary conditions are induced by evaluating Riemann–Liouville integrals at those end-points. For each \(1/2<\alpha <1\) it is shown that there is a finite number of real eigenvalues, an infinite number of non-real eigenvalues, that the number of such real eigenvalues grows without bound as \(\alpha \rightarrow 1^-\), and that the fractional operator converges to an ordinary two term Sturm–Liouville operator as \(\alpha \rightarrow 1^-\) with Dirichlet boundary conditions. Finally, two-sided estimates as to their location are provided as is their asymptotic behavior as a function of \(\alpha \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Al-Mdallal, Q.M.: An efficient method for solving fractional Sturm–Liouville problems. Chaos Solitons Fractals 40, 183–189 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Al-Mdallal, Q.M.: On the numerical solution of fractional Sturm–Liouville problems. Int. J. Comput. Math. 87, 2837–2845 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Blaszczyk, T., Ciesielski, M.: Numerical solution of fractional Sturm–Liouville equation in integral form. Fract. Calculus Appl. Anal. 17(2), 307–320 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Bochner, S., Chandrasekharan, K.: Fourier Transforms. Princeton University Press, Princeton (1949)

    MATH  Google Scholar 

  5. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195(4–5), 127–293 (1990)

    MathSciNet  Google Scholar 

  6. Erdélyi, A., et al.: Higher Transcendental Functions, vol. 3. McGraw-Hill Book Company Inc., New York (1953)

    MATH  Google Scholar 

  7. Gorenflo, R., Mainardi, F.: Fractional oscillations and Mittag–Leffler functions. In Proceeding of the International workshop on the Recent Advances in Applied Mathematics (RAAM 96). Kuwait University, Kuwait City (1996)

  8. Hanneken, J.W., Narahari Achar, B.N., Vaught, D.M.: An alpha-beta phase diagram representation of the zeros and properties of the Mittag–Leffler function. Adv. Math. Phys. 2013, Article ID 421685

  9. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  10. Klimek, M., Agrawal, O.P.: Fractional Sturm–Liouville problem. Comput. Math. Appl. 66(5), 795–812 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Klimek, M., Agrawal, O.P.: On a regular fractional Sturm–Liouville problem with derivatives of order \((0,1)\). IEEE, pp. 284–289 (2012). https://doi.org/10.1109/CarpathianCC.2012.6228655

  12. Klimek, M., Odzijewicz, T., Malinowska, A.B.: Variational methods for the fractional Sturm–Liouville problem. J. Math. Anal. Appl. 416, 402–426 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, p. 368. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  14. Metzler, R., Nonnenmacher, T.F.: Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations and physical motivations. Chem. Phys. 284(1–2), 1–77 (2000)

    Google Scholar 

  15. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 67–90 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Mittag-Leffler, G.M.: Sur la nouvelle function \(E_{\alpha }\). C.R. Acad. Sci. Paris 137, 554–558 (1903)

    MATH  Google Scholar 

  17. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, New York (1998)

    MATH  Google Scholar 

  18. Pooseh, S., Rodrigues, H.S., Torres, D.F.M.: Fractional derivatives in Dengue epidemics. AIP Conf. Proc. 1389, 739–742 (2011)

    Google Scholar 

  19. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63(1), 010801 (2009)

    Google Scholar 

  20. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Philadelphia, xxvii, 1006 pp. (1993)

  21. Shlesinger, M.F., West, B.J., Klafter, J.: Levy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58(11), 1100–1103 (1987)

    MathSciNet  Google Scholar 

  22. Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dehghan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M., Mingarelli, A.B. Fractional Sturm–Liouville eigenvalue problems, I. RACSAM 114, 46 (2020). https://doi.org/10.1007/s13398-019-00756-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-019-00756-8

Keywords

Mathematics Subject Classification

Navigation