Skip to main content
Log in

Relaxed projection and contraction methods for solving Lipschitz continuous monotone variational inequalities

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

In each iteration, the projection and contraction (PC) methods need to calculate one (or two) projection. Generally speaking, however, it is difficult to calculate a projection unless the feasible set is simple enough. This might seriously affect the feasibility of the PC methods. To overcome this weakness, in the setting of Hilbert spaces, a relaxed projection and contraction method is proposed for solving Lipschitz continuous and monotone variational inequalities. The core of our algorithm is to replace every projection onto the feasible set with a projection onto some half-space and this makes our algorithm easy to implement. Also, the step length of our algorithm can be selected adaptively. The weak convergence and the O(1 / t) convergence rate of our algorithm are proved. Primary numerical experiments illustrate the performance and advantage of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Antipin, A.S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekon. i Mat. Metody. 12, 1164–1173 (1976)

    Google Scholar 

  2. Cai, X.J., Gu, G.Y., He, B.S.: On the \(O(1/t)\) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57, 339–363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, G., Gibali, A., Iyiola, O.S., Shehu, Y.: A new double-projection method for solving variational inequalities in Banach Spaces. J. Optim. Theory Appl. 178, 219–239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Springer, Berlin (2012)

    MATH  Google Scholar 

  5. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hibert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dong, Q.L., Jiang, D., Gibali, A.: A modified subgradient extragradient method for solving the variational inequality. Numer. Algorithms 79, 927–940 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong, Q.L., Lu, Y.Y., Yang, J.: The extragradient algorithm with inertial effects for solving the variational inequality. Optimization 65, 2217–2226 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problem, vols. I and II. Springer, Berlin (1975)

  9. Fichera, G.: Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei VIII. Ser. Rend. Cl. Sci. Fis. Mat. Nat. 34, 138–142 (1963)

    MathSciNet  MATH  Google Scholar 

  10. Fichera, G.: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat., Sez. I. VIII. Ser. 7, 91–140 (1964)

    MathSciNet  MATH  Google Scholar 

  11. Fukushima, M.: A relaxed projection method for variational inequalities. Math. Program. 35, 58–70 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harker, P.T., Pang, J.-S.: A damped-Newton method for the linear complementarity problem. In: Allgower, G., Georg, K. (eds) Computational Solution of Nonlinear Systems of Equations, Lectures in Appl. Math., vol. 26. AMS, Providence, pp. 265–284 (1990)

  13. He, B.S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35, 69–76 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, B.S., Liao, L.Z.: Improvements of some projection methods for monotong nonlinear variational inequalities. J. Optim. Theory Appl. 112, 111–128 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, B.S., Xu, M.H.: A general framework of contraction methods for monotone variational inequalities. Pac. J. Optim. 4, 195–212 (2008)

    MathSciNet  MATH  Google Scholar 

  16. He, B.S., Yuan, X.M., Zhang, J.J.Z.: Comparison of two kinds of prediction-correction methods for monotone variational inequalities. Comput. Appl. 27, 247–267 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, S.N., Xu, H.K.: Uniqueness of supporting hyperplanes and an alternative to solutions of variational inequalities. J. Glob. Optim. 57, 1375–1384 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, S.N., Wu, T., Gibali, A.: Totally relaxed, self-adaptive algorithm for solving variational inequalities over the intersection of sub-level sets. Optimization 67(9), 1487–1504 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. He, S.N., Tian, H.L., Xu, H.K.: The selective projection method for convex feasibility and split feasibility problems. J. Nonlinear Convex Anal. 19, 1199–1215 (2018)

    MathSciNet  Google Scholar 

  20. He, S.N., Tian, H.L.: Selective projection methods for solving a class of variational inequalities. Numer. Algorithms 80(2), 617–634 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hieu, D.V., Anh, P.K., Muu, L.D.: Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 66, 75–96 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Howard, A.G.: Large mrgin, transformation learning, Ph.D. Thesis, Graduate School of Arts and Sciene. Columbia University (2009)

  23. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody. 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  24. Lacoste-Julien, S.: Discriminative machine learning with structure. Ph.D. Thesis, Computer Science, University of California. Berkeley (2009)

  25. Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive maappings and monotone mappings. J. Optim. Theory Appl 128, 191–201 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pan, Y.: A game theoretical approach to constrained OSNR optimization problems in optical network, Ph.D. Thesis, Electrical and Computer Engineering. University of Toronto (2009)

  28. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sha, F.: Large margin training of acoustic models for speech recognition, Ph.D. Thesis, Computer and Information Science. University of Pennsylvania (2007)

  30. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Solodov, M.V., Tseng, P.: Modified projection-type methods for monotone variational inequalities. SIAM J. Control Optim. 34, 1814–1830 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, D.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91, 123–140 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Taskar, B., Lacoste-Julien, S., Jordan, M.I.: Structured prediction, dual extragradient and Bregman projections. J. Mach. Learn. Res. 7, 1627–1653 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the reviewers for their valuable suggestions and useful comments that have led to the present improved version of the original manuscript. This work is supported by the Fundamental Research Funds for the Central Universities (3122017078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songnian He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Dong, QL. & Tian, H. Relaxed projection and contraction methods for solving Lipschitz continuous monotone variational inequalities. RACSAM 113, 2773–2791 (2019). https://doi.org/10.1007/s13398-019-00658-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-019-00658-9

Keywords

Mathematics Subject Classification

Navigation