Skip to main content
Log in

Properties of positive solutions for m-point fractional differential equations on an infinite interval

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

In this paper, by using a recent fixed point theorem, we discuss a class of m-point boundary value problems of fractional differential equations on an infinite interval

$$\begin{aligned} \left\{ \begin{array}{l} D^\alpha _{0^+}u(t)+\lambda {a(t)f(t, u(t))}=0,~t\in (0,+\infty ),\\ u(0)=u'(0)=0,~D^{\alpha -1}_{0^+}{u(+\infty )} =\sum \limits _{i=1}^{m-2}\beta _iu(\xi _i), \end{array}\right. \end{aligned}$$

where \(2<\alpha <3\)\(D_{0^+}^\alpha \) is the usual Riemann–Liouville fractional derivative, \(\lambda \) is a positive parameter, \(a:[0,+\infty )\rightarrow [0,+\infty )\) and \(f:[0,1]\times [0,+\infty )\rightarrow [0,+\infty )\) are continuous, \(0<\xi _1<\xi _2<\cdots<\xi _{m-2}<+\infty \), \(\beta _i\ge 0\), \(i=1,2,\ldots ,m-2,\) and \(0<\sum \nolimits _{i=1}^{m-2}\beta _{i} \xi _i^{\alpha -1}<\Gamma (\alpha )\). It is shown that, for any given parameter \(\lambda >0\), the above problem has a unique positive solution \(u_\lambda ^*\) in a special set \(K_h\), here \(h(t)=t^{\alpha -1},~t\in [0,+\infty )\). Further, we give some good properties of positive solutions which depend on the parameter \(\lambda >0\), namely, the positive solution \(u_\lambda ^*\) is strictly increasing, continuous in \(\lambda \); and \(\lim \nolimits _{\lambda \rightarrow 0^+}\Vert u_\lambda ^*\Vert =0\), \(\lim \nolimits _{\lambda \rightarrow +\infty }\Vert u_\lambda ^*\Vert =+\infty \). In the end, a simple example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, B., Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for fractional \(q\)-difference inclusions with \(q\)-antiperiodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 59, 119–134 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Ahmad, B., Ntouyas, S.K., Tariboon, J., Alsaedi, A., Alsulami, H.H.: Impulsive fractional \(q\)-integro-difference equations with separated boundary conditions. Appl. Math. Comput. 281, 199–213 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Chen, Y., Tang, X.: Positive solutions of fractional differential equations at resonance on the half-line. Bound. Value Probl. 2012, 64 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gaul, L., Klein, P., Kempffe, S.: Damping description involving fractional operators. Mech. Syst. Signal Process 5, 81–88 (1991)

    Article  Google Scholar 

  5. Graef, J.R., Kong, L., Kong, Q., Wang, M.: Uniqueness of positive solutions of fractional boundary value problems with non-homogeneous integral boundary conditions. Fract. Calc. Appl. Anal. 15(3), 509–528 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations, North-Holland mathematics studies, vol. 204. Elsevier, Amsterdam (2006)

    Google Scholar 

  7. Kosmatov, N.: A singular boundary value problem for nonlinear differential equations of fractional order. J. Appl. Math. Comput. 29, 125–135 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kou, C., Zhou, H., Yan, Y.: Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis. Nonlinear Anal. 74, 5975–5986 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lakshmikantham, V.: Theory of fractional functional differential equations. Nonlinear Anal. 69, 3337–3343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liang, S., Zhang, J.: Existence of three positive solutions of m-point boundary value problems for some nonlinear fractional differential equations on an infinite interval. Comput. Math. Appl. 61, 3343–3354 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, X., Liu, X., Jia, M., Li, Y., Zhang, S.: Existence of positive solutions for integral boundary value problemds of franctional differential equations on infinite interval. Math. Methods Appl. Sci. 40, 1892–1904 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Li, X., Liu, X., Jia, M., Zhang, L.: The positive solutions of infinite-point boundary value problem of fractional differential equations on the infinite interval. Adv. Differ. Equ. 2017, 126 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, X., Han, Z., Sun, S., Zhao, P.: Existence of solutions for fractional \(q\)-difference equation with mixed nonlinear boundary conditions. Adv. Differ. Equ. 2014, 326 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. Wiley, New York (1993)

    MATH  Google Scholar 

  15. Oldham, K.B., Spanier, J.: The fractional calculus. Academic, New York (1974)

    MATH  Google Scholar 

  16. Podlubny, I.: Fractional differential equations, mathematics in science and engineering. Academic, New York (1999)

    MATH  Google Scholar 

  17. Shah, S.A.H., Rehman, M.U.: A note on terminal value problems for fractional differential equations on infinite interval. Appl. Math. Lett. 52, 118–125 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shen, C., Zhou, H., Yang, L.: On the existence of solution to a boundary value problem of fractional differential equation on the infinite intrrval. Bound. Value Probl. 2015, 241 (2015)

    Article  Google Scholar 

  19. Su, X., Zhang, S.: Unbounded solutions to a boundary value problem of fractional order on the half-line. Comput. Math. Appl. 61, 1079–1087 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, J., Fec̆kan, M., Zhou, Y.: A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19, 806–831 (2016)

    Article  MathSciNet  Google Scholar 

  21. Wang, W., Guo, X.: Eigenvalue problem for fractional differential equations with nonlinear integral and disturbance parameter in boundary conditions. Bound. Value Probl. 2016, 42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, H., Zhang, L.: The solution for a class of sum operator equation and its application to fractional differential equation boundary value problems. Bound. Value Probl. 2015, 203 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, W.: Positive solutions for three-point boundary value problem of nonlinear fractional \(q\)-difference equation. Kyungpook Math. J. 56, 419–430 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, L., Chen, H.: Unique positive solutions for fractional differential equation boundary value problems. Appl. Math. Lett. 23, 1095–1098 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, C., Zhai, C.: Uniqueness of positive solutions for a fractional differential equation via a fixed point theorem of a sum operator. Electron. J. Differ. Equ. 2012, 70 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhai, C., Ren, J.: Positive and negative solutions of a boundary value problem for a fractional \(q\)-difference equation. Adv. Differ. Equ. 2017, 82 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhai, C., Wang, L.: Some existence, uniqueness results on positive solutions for a fractional differential equation with infinite-point boundary conditions. Nonlinear Anal. Model. Control 22(4), 566–577 (2017)

    Article  MathSciNet  Google Scholar 

  28. Zhai, C., Wang, F.: Properties of positive solutions for the operator equation \(Ax=\lambda x\) and applicatons to fractional differential equations with integal boundary conditions. Adv. Differ. Equ. 2015, 366 (2015)

    Article  Google Scholar 

  29. Zhang, X.: Positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions. Appl. Math. Lett. 39, 22–27 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhong, Q., Zhang, X.: Positive solution for higher-order singular infinite-point fractional differential equation with \(p\)-Laplacian. Adv. Differ. Equ. 2016, 11 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, Y.: Existence and uniqueness of fractional functional differential equations with unbounded delay. Int. J. Dyn. Syst. Differ. Equ. 1(4), 239–244 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the Youth Science Foundation of China (11201272) and Shanxi Province Science Foundation (2015011005), 131 Talents Project of Shanxi Province (2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengbo Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, C., Wang, W. Properties of positive solutions for m-point fractional differential equations on an infinite interval. RACSAM 113, 1289–1298 (2019). https://doi.org/10.1007/s13398-018-0548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-018-0548-2

Keywords

Mathematics Subject Classification

Navigation