Skip to main content
Log in

1.4 µm-Thick Transparent Radio Frequency Transmission Lines Based on Instant Fusion of Polyethylene Terephthalate Through Surface of Ag Nanowires

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Though a percolated network of silver nanowires (AgNWs) has been considered the most promising flexible transparent electrode because of it high conductivity, high transmittance, and excellent flexibility, fabrication of AgNW-based transmission lines designed to conduct high frequency signals has been scarcely reported. The fabrication and performance of extremely thin (1.4 µm thick) and low lossy (smaller than − 17 dB for reflection coefficient corresponding to 2.5 GHz) transmission lines with unprecedented transparency (higher than 90% for the entire visible light spectrum) are demonstrated in this study. AgNWs deposited onto a 1.4 µm-thick polyethylene terephthalate (PET) sheet were irradiated by intense-pulsed-light to selectively raise their temperature. The intensive photon energy delivered to the AgNWs simultaneously caused the active diffusion of Ag atoms and plasmonic welding, resulting in large drops in resistivity without drastic changes in their physical shape or the optical transmittance of the films. Furthermore, absorption of heat also thermally activated the underlying polymer and causing it to react with the surface of the AgNWs—this results in enhanced adhesion between the AgNWs and the PET. Measurements and simulation of specially designed coplanar waveguide circuits revealed that the fabricated electrode could simultaneously provide excellent transmission characteristics and mechanical stability and transparency.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Webb, R.C., Bonifas, A.P., Behnaz, A., Zhang, Y., Yu, K.J., Cheng, H., Shi, M., Bian, Z., Liu, Z., Kim, Y.-S.: Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12, 938 (2013)

    Article  Google Scholar 

  2. Lee, S., Reuveny, A., Reeder, J., Lee, S., Jin, H., Liu, Q., Yokota, T., Sekitani, T., Isoyama, T., Abe, Y., Suo, Z., Someya, T.: A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11, 472 (2016)

    Article  Google Scholar 

  3. Hwang, B.U., Lee, J.H., Trung, T.Q., Roh, E., Kim, D.I., Kim, S.W., Lee, N.E.: Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 9, 8801–8810 (2015)

    Article  Google Scholar 

  4. Ho, M.D., Ling, Y., Yap, L.W., Wang, Y., Dong, D., Zhao, Y., Cheng, W.: Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv. Funct. Mater. 27, 1700845 (2017)

    Article  Google Scholar 

  5. Trung, T.Q., Ramasundaram, S., Hwang, B.U., Lee, N.E.: An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016)

    Article  Google Scholar 

  6. You, B., Kim, Y., Ju, B.K., Kim, J.W.: Highly stretchable and waterproof electroluminescence device based on superstable stretchable transparent electrode. ACS Appl. Mater. Interfaces 9, 5486–5494 (2017)

    Article  Google Scholar 

  7. Krantz, J., Stubhan, T., Richter, M., Spallek, S., Litzov, I., Matt, G.J., Spiecker, E., Brabec, C.J.: Spray-coated silver nanowires as top electrode layer in semitransparent P3HT:PCBM-based organic solar cell devices. Adv. Funct. Mater. 23, 1711–1717 (2013)

    Article  Google Scholar 

  8. Wu, H., Kong, D., Ruan, Z., Hsu, P.-C., Wang, S., Yu, Z., Carney, T.J., Hu, L., Fan, S., Cui, Y.: A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 8, 421–425 (2013)

    Article  Google Scholar 

  9. Pang, S., Hernandez, Y., Feng, X., Müllen, K.: Graphene as transparent electrode material for organic electronics. Adv. Mater. 23, 2779–2795 (2011)

    Article  Google Scholar 

  10. Lee, S.M., Byeon, H.J., Lee, J.H., Baek, D.H., Lee, K.H., Hong, J.S., Lee, S.H.: Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci. Rep. 4, 6074 (2014)

    Article  Google Scholar 

  11. Han, C.J., Park, B.-G., Oh, M.S., Jung, S.-B., Kim, J.-W.: Photo-induced fabrication of Ag nanowire circuitry for invisible, ultrathin, conformable pressure sensors. J. Mater. Chem. C 5, 9986–9994 (2017)

    Article  Google Scholar 

  12. Song, L., Myers, A.C., Adams, J.J., Zhu, Y.: Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl. Mater. Interfaces 6, 4248–4253 (2014)

    Article  Google Scholar 

  13. Kaltenbrunner, M., White, M.S., Głowacki, E.D., Sekitani, T., Someya, T., Sariciftci, N.S., Bauer, S.: Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012)

    Article  Google Scholar 

  14. White, M.S., Kaltenbrunner, M., Głowacki, E.D., Gutnichenko, K., Kettlgruber, G., Graz, I., Aazou, S., Ulbricht, C., Egbe, D.A.M., Miron, M.C., Major, Z., Scharber, M.C., Sekitani, T., Someya, T., Bauer, S., Sariciftci, N.S.: Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7, 811–816 (2013)

    Article  Google Scholar 

  15. Reuveny, A., Lee, S., Yokota, T., Fuketa, H., Siket, C.M., Lee, S., Sekitani, T., Sakurai, T., Bauer, S., Someya, T.: High-frequency, conformable organic amplifiers. Adv. Mater. 28, 3298–3304 (2016)

    Article  Google Scholar 

  16. Melzer, M., Kaltenbrunner, M., Makarov, D., Karnaushenko, D., Karnaushenko, D., Sekitani, T., Someya, T., Schmidt, O.G.: Imperceptible magnetoelectronics. Nat. Commun. 6, 6080 (2015)

    Article  Google Scholar 

  17. Hayata, H., Okamoto, M., Takeoka, S., Iwase, E., Fujie, T., Iwata, H.: Printed high-frequency RF identification antenna on ultrathin polymer film by simple production process for soft-surface adhesive device. Jpn. J. Appl. Phys. 56, 05EC01 (2017)

    Article  Google Scholar 

  18. Kaltenbrunner, M., Sekitan, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S., Someya, T.: An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013)

    Article  Google Scholar 

  19. Elwi, T.A., Al-Rizzo, H.M., Rucker, D.G., Dervishi, E., Li, Z., Biris, A.S.: Multi-walled carbon nanotube-based RF antennas. Nanotechnology 21, 045301 (2010)

    Article  Google Scholar 

  20. Huang, X., Leng, T., Zhu, M., Zhang, X., Chen, J., Chang, K., Aqeeli, M., Geim, A.K., Novoselov, K.S., Hu, Z.: Highly flexible and conductive printed graphene for wireless wearable communications applications. Sci. Rep. 5, 18298 (2016)

    Article  Google Scholar 

  21. Komoda, N., Nogi, M., Suganuma, K., Kohno, K., Akiyama, Y., Otsuka, K.: Printed silver nanowire antennas with low signal loss at high-frequency radio. Nanoscale 4, 3148–3153 (2012)

    Article  Google Scholar 

  22. Kim, Y., Ryu, T.I., Ok, K.-H., Kwak, M.-G., Park, S., Park, N.-G., Han, C.J., Kim, B.S., Ko, M.J., Son, H.J., Kim, J.-W.: Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 25, 4580–4589 (2015)

    Article  Google Scholar 

  23. Ok, K.-H., Kim, J., Park, S.-R., Kim, Y., Lee, C.-J., Hong, S.-J., Kwak, M.-G., Kim, N., Han, C.J., Kim, J.-W.: Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes. Sci. Rep. 5, 9464 (2015)

    Article  Google Scholar 

  24. Ni, H., Liu, J., Wang, Z., Yang, S.: A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications. J. Ind. Eng. Chem. 28, 16–27 (2015)

    Article  Google Scholar 

  25. Jun, S., Han, C.J., Kim, Y., Ju, B.-K., Kim, J.-W.: A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor. J. Mater. Chem. A 5, 3221–3229 (2017)

    Article  Google Scholar 

  26. Gotoh, K., Yasukawa, A., Kobayashi, Y.: Wettability characteristics of poly(ethylene terephthalate) films treated by atmospheric pressure plasma and ultraviolet excimer light. Polym. J. 43, 545–551 (2011)

    Article  Google Scholar 

  27. Perez-Roldan, M.J., Debarnot, D., Poncin-Epaillard, F.: Processing of plasma-modified and polymer-grafted hydrophilic PET surfaces, and study of their aging and bioadhesive properties. RSC Adv. 4, 31409–31415 (2014)

    Article  Google Scholar 

  28. Jun, S., Ju, B.-K., Kim, J.-W.: Ultra-facile fabrication of stretchable and transparent capacitive sensor employing photo-assisted patterning of silver nanowire networks. Adv. Mater. Technol. 1, 1600062 (2016)

    Article  Google Scholar 

  29. Govorov, A.O., Richardson, H.H.: Generating heat with metal nanoparticles. Nanotoday 2, 30–38 (2007)

    Article  Google Scholar 

  30. Garnett, E.C., Cai, W., Cha, J.J., Mahmood, F., Connor, S.T., Christoforo, M.G., Cui, Y., McGehee, M.D., Brongersma, M.L.: Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241–249 (2012)

    Article  Google Scholar 

  31. Song, C.H., Han, C.J., Ju, B.K., Kim, J.W.: Photoenhanced patterning of metal nanowire networks for fabrication of ultraflexible transparent devices. ACS Appl. Mater. Interfaces. 8, 480–489 (2016)

    Article  Google Scholar 

  32. Jiu, J., Nogi, M., Sugahara, T., Tokuno, T., Araki, T., Komoda, N., Suganuma, K., Uchida, H., Shinozaki, K.: Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. J. Mater. Chem. 22, 23561–23567 (2012)

    Article  Google Scholar 

  33. Jiu, J., Sugahara, T., Nogi, M., Araki, T., Suganuma, K., Uchida, H., Shinozaki, K.: High-intensity pulse light sintering of silver nanowire transparent films on polymer substrates: the effect of the thermal properties of substrates on the performance of silver films. Nanoscale 5, 11820–11828 (2013)

    Article  Google Scholar 

  34. Pyo, K., Lee, D.H., Kim, Y., Kim, J.-W.: Extremely rapid and simple healing of a transparent conductor based on Ag nanowires and polyurethane with a Diels–Alder network. J. Mater. Chem. C 4, 972–977 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant [number 2015R1A4A1042417] funded by the Korean government (MSIP). Further support was also provided by the Ministry of Trade, Industry and Energy, Republic of Korea [grant number N0002310] and the Korea Institute of Industrial Technology as “Characteristics of VO2 Nanoink and Intense Pulsed Light Low-Temperature Sintering for Flexible Smart Window Films Using Direct Printing Technology [kitech EO-17-0026]”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Boo Jung or Jong-Woong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SW., Kim, KS., Park, M. et al. 1.4 µm-Thick Transparent Radio Frequency Transmission Lines Based on Instant Fusion of Polyethylene Terephthalate Through Surface of Ag Nanowires. Electron. Mater. Lett. 14, 599–609 (2018). https://doi.org/10.1007/s13391-018-0069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0069-3

Keywords

Navigation