Skip to main content
Log in

Enhanced thermoelectric properties of Ca1-x Sm x Mn1-y W y O3-δ for power generation

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A series of Ca1-x Sm x Mn1-y W y O3-δ (0.05 ≤ x ≤ 0.25 and 0.05 ≤ y ≤ 0.2) was prepared by the solid-state reaction technique. The partial substitution of Sm3+ for Ca2+ and of W6+ for Mn4+ in CaMnO3-δ reduced the grain size and density. The substitution of Sm3+ and W6+ yielded a marked increase in electrical conductivity and a decrease in the absolute value of the Seebeck coefficient due to an increase in electron concentration. This gave rise to improved thermoelectric properties. A maximum power factor (2.07 × 10-4 Wm-1K-2) was obtained at 800°C for Ca0.9Sm0.1MnO3-δ . It is believed that the substitution of Sm3+ for Ca2+ is a promising approach for enhancing the thermoelectric performance of CaMnO3-δ .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Applied Energy 143, 1 (2015).

    Article  Google Scholar 

  2. C. M. Kim, J. W. Seo, S. M. Choi, W. S. Seo, S. Lee, Y. S. Lim, and K. Park, Electron. Mater. Lett. 11, 283 (2015).

    Google Scholar 

  3. J. K. Lee, M. W. Oh, B. S. Kim, B. K. Min, H. W. Lee, and S. D. Park, Electron. Mater. Lett. 10, 813 (2014).

    Article  Google Scholar 

  4. K. Park and G. W. Lee, Energy 60, 87 (2013).

    Article  Google Scholar 

  5. K. Park and J. W. Choi, J. Nanosci. Nanotechnol. 12, 3624 (2012).

    Article  Google Scholar 

  6. G. W. Lee, J. Y. Kim, T. Athar, S. J. Kim, W. S. Seo, and K. Park, Ceram. Int. 39, 1397 (2013).

    Article  Google Scholar 

  7. K. Park, H. K. Hwang, J. W. Seo, and W.-S. Seo, Energy 54, 139 (2013).

    Article  Google Scholar 

  8. K. Park and H. K. Hwang, Energy 55, 304 (2013).

    Article  Google Scholar 

  9. H. K. Hwang, J. W. Seo, W.-S. Seo, Y.-S. Lim, and K. Park, Int. J. Energy Res. 38, 241 (2014).

    Article  Google Scholar 

  10. S. Wang, Q. Lu, L. Li, G. Fu, F. Liu, S. Dai, W. Yu, and J. Wang, Scripta Materialia 69, 533 (2013).

    Article  Google Scholar 

  11. F. P. Zhang, Q. M. Lu, X. Zhang, and J. X. Zhang, Physica Scripta 88, 035705 (2013).

    Article  Google Scholar 

  12. H. Taguchi, T. Kugi, M. Kato, and K. Hirota, J. Am. Ceram. Soc. 93, 3009 (2010).

    Article  Google Scholar 

  13. E. I. Leonidova, I. A. Leonidov, M. V. Patrakeev, and V. L. Kozhevnikov, J. Solid State Electrochem. 15, 1071 (2011).

    Article  Google Scholar 

  14. L. Bocher, M. H. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, and A. Weidenkaff, Inorg. Chem. 47, 8077 (2008).

    Article  Google Scholar 

  15. J. W. Park, D. H. Kwak, S. H. Yoon, and S. C. Choi, J. Alloys Compd. 487, 550 (2009).

    Article  Google Scholar 

  16. T. Fukui, M. Matsuzawa, R. Funahashi, and A. Kosuga, J. Electron. Mater. 43, 1548 (2014).

    Article  Google Scholar 

  17. R. Kabir, T. Zhang, R. Donelson, D. Wang, R. Tian, T. T. Tan, B. Gong, and S. Li, Phys. Status Solidi A 211, 1200 (2014).

    Article  Google Scholar 

  18. JCPDS file No. 76-1132.

  19. S. M. Choi, C.-H. Lim, and W.-S. Seo, J. Electron. Mater. 40, 551 (2010).

    Article  Google Scholar 

  20. I. Matos, S. Serio, M. E. Lopes, M. R. Nunes, and M. E. Melo Jorge, J. Alloys Compd. 509, 9617 (2011).

    Article  Google Scholar 

  21. JCPDS file No. 46-1096.

  22. L. Pi, S. Zhang, W. Tong, S. Tan, and Y. Zhang, Solid State Commun. 139, 460 (2006).

    Article  Google Scholar 

  23. S. Bernik, N. Daneu, and A. Recnik, J. Eur. Ceram. Soc. 24, 3703 (2004).

    Article  Google Scholar 

  24. P. Cotterill and P. R. Mould, Recrystallization and Grain Growth in Metals, John Wiley & Sons: New York, 1976.

    Google Scholar 

  25. Y. Huang and F. J. Humphreys, Mater. Chem. Phys. 132, 166 (2012).

    Article  Google Scholar 

  26. J. E. Krzanowskip and S. M. Allen, Acta Metall. 34, 1035 (1986).

    Article  Google Scholar 

  27. M. Hillert and B. Sundman, Acta metall. 24, 731 (1976).

    Article  Google Scholar 

  28. D. Fan, S. P. Chen, and L.-Q. Chen, J. Mater. Res. 14, 1113 (1999).

    Article  Google Scholar 

  29. J. W. Cahn, Acta metall. 10, 789 (1962).

    Article  Google Scholar 

  30. P.-L. Chen and I.-W. Chen, J. Amer. Ceram. Soc. 79, 1793 (1996).

    Article  Google Scholar 

  31. S. Hashimoto and H. Iwahara, J. Electroceramics 4, 225 (2000).

    Article  Google Scholar 

  32. N. Wang, H. He, X. Li, L. Han, and C. Zhang, J. Alloys Compd. 506, 293 (2010).

    Article  Google Scholar 

  33. R. Kabir, T. Zhang, D. Wang, R. Donelson, R. Tian, T. T. Tan, and S. Li, J. Mater. Sci. 49, 7522 (2014).

    Article  Google Scholar 

  34. P. H. Isasi, M. E. Lopes, M. R. Nunes, and M. E. Melo Jorge, J. Phys. Chem. Solids 70, 405 (2009).

    Article  Google Scholar 

  35. Y. Wang, Y. Sui, and W. Su, J. Appy. Phys. 104, 093703 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, J.W., Cha, J.S. & Park, K. Enhanced thermoelectric properties of Ca1-x Sm x Mn1-y W y O3-δ for power generation. Electron. Mater. Lett. 12, 113–120 (2016). https://doi.org/10.1007/s13391-015-5198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5198-3

Keywords

Navigation