Skip to main content
Log in

Enhanced magnetic performance of lead-free (Bi0.5Na0.5)TiO3-CoFe2O4 magnetoelectric ceramics

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

This research was conducted to study the magnetoelectric ceramics with the composition belonging to (1-x)(Bi0.5Na0.5)TiO3-xCoFe2O4 or (1-x)BNT-xCF (when x = 0 - 0.02 mol fraction). All compositions have been synthesized by a conventional mixed oxide method and sintered at the temperature ranging of 900°C–1150°C. The ceramics were fabricated to investigate the effects of CF on crystal structure, microstructure, magnetoelectric effect (ME) and electrical properties of BNT ceramic. The optimum sintering temperature was found to be 1100°C for pure BNT ceramic and 1000°C for BNT-CF sample group. X-ray diffraction pattern revealed that all compositions exhibited a single perovskite structure without impurity phase. Diffraction peaks from the amount of CF were not observed in these patterns which may be due to the relatively low concentration of CF added into BNT ceramic and may be below the detection limit of the instrument. The reduction of grain size and dielectric improvement were observed when CF was added. The addition of CF improved the magnetic behavior as well as resulted in a slight change in ferroelectric properties. The addition of 2 mol. % CF into BNT was found to be the optimal composition for produce the magnetoelectric materials simultaneously exhibiting good ferromagnetic and ferroelectric properties at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Academic Press, London (1971).

    Google Scholar 

  2. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, Sov. Phys. Solid State (Engl. Transl.). 2, 2651 (1961).

    Google Scholar 

  3. T. R. Shrout and S. J. Zhang, J. Electroceram. 19, 111 (2007).

    Article  Google Scholar 

  4. S. Pattanayak, R. N. P. Choudhary, and P. R. Das, Electron. Mater. Lett. 10, 165 (2014).

    Article  Google Scholar 

  5. J. Rani, K. L. Yadav, and S. Prakash, Mater. Chem. Phys. 147, 1183 (2014).

    Article  Google Scholar 

  6. J. Van Suchetelene, Philips Res. Rep. 27, 28 (1972).

    Google Scholar 

  7. L. H. Pang, W. J. Ji, Y. Zhang, L. Wang, S. T. Zhang, Z. L. Luo, and Y. F. Chen, J. Phys. D. Appl. Phys. 42, 045304 (2009).

    Article  Google Scholar 

  8. R. P. Mahajan, K. K. Patankar, M. B. Kothale, S. C. Chaudhari, V. L. Mathe, and S. A. Patil, Pramana-J. Phys. 58, 1115 (2002).

    Article  Google Scholar 

  9. L. Hao, D. Zhou, Q. Fu, and Y. Hu, J. Mater. Sci. 48, 178 (2013).

    Article  Google Scholar 

  10. C. Ederer and N. A. Spaldin, Solid. State. Mater. Sci. 9, 128 (2005).

    Article  Google Scholar 

  11. C. Kruea-In, T. Glansuvarn, S. Eitssayeam, K. Pengpat, and G. Rujijanagul, Electron. Mater. Lett. 9, 833 (2013).

    Article  Google Scholar 

  12. S. H. Lee, H. J. Kim, and Y. H. Lee, Electron. Mater. Lett. 8, 289 (2012).

    Article  Google Scholar 

  13. S. H. Lee, C. B. Yoon, S. B. Seo, and H. E. Kim, J. Mater. Res. 18, 1765 (2003).

    Article  Google Scholar 

  14. K. Pengpat, P. Jarupoom, P. Kantha, S. Eitssayeam, U. Intatha, G. Rujijanagul, and T. Tunkasiri, Curr. Appl. Phys. 8, 241 (2008).

    Article  Google Scholar 

  15. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rödel, J. Electroceram. 29, 71 (2012).

    Article  Google Scholar 

  16. A. J. Moulson and J. M. Herbert, Electroceramics, Chapman and Hall Press, New York (1996).

    Google Scholar 

  17. Y. M. Chiang, D. P. Birnie III, and W. D. Kingery, Physical Ceramics, John Wiley & Sons Inc., New York (1997).

    Google Scholar 

  18. X. C. Zheng, G. P. Zheng, Z. Lin, and Z. Y. Jiang, J. Electroceram. 28, 20 (2012).

    Article  Google Scholar 

  19. R. C. Kambale, N. R. Adhate, B. C. Chougule, and Y. D. Kplekar, J. Alloys Compd. 491, 372 (2010).

    Article  Google Scholar 

  20. R. S. Devan and B. K. Chougule, J. Appl. Phys. 101, 014109 (2007).

    Article  Google Scholar 

  21. S. R. Das, R. N. Choudhary, P. Bhattacharya, R. S. Katiyar, P. Dutta, A. Manivannan, and M. S. Seehra, J. Appl. Phys. 101, 34104 (2007).

    Article  Google Scholar 

  22. Z. H. Chi, H. Yang, S. M. Feng, F. Y. Li, R. C. Yu, and C. Q. Jin, J. Mag. Mag. Mater. 310, e358 (2007).

    Article  Google Scholar 

  23. M. M. Kumar, S. Srinath, G. S. Kumar, and S. V. Suryanarayana, J. Mag. Mag. Mater. 188, 203 (1998).

    Article  Google Scholar 

  24. J. Chen, Y. Qi, G. Shi, X. Yan, S. Yu, and J. Cheng, J. Appl. Phys. 104, 64124 (2008).

    Article  Google Scholar 

  25. W. C. Lee, C. Y. Huang, L. K. Tsao, and Y. C. Wu, J. Alloy. Compd. 492, 307 (2010).

    Article  Google Scholar 

  26. W. Jo, T. Granzow, E. Aulbach, J. Rödel, and D. Damjanovic, J. Appl. Phys. 105, 094102 (2009).

    Article  Google Scholar 

  27. F. Moura, A. Z Simoes, B. D. Stojanovic, M. A. Zaghete, E. Longo, and J. A. Varela, J. Alloy Compd. 462, 129 (2008).

    Article  Google Scholar 

  28. B. Wang, L. Luo, F. Ni, P. Du, W. Li, and H. Chen, J. Alloy Compd. 526, 79 (2012).

    Article  Google Scholar 

  29. G. A. Smolensky, J. Phys. Soc. Jpn. (Suppl.). 28, 26 (1970).

    Google Scholar 

  30. G. Fan, W. Lu, X. Wang, F. Liang, and J. Xiao, J. Phys. D: Appl. Phys. 41, 035403 (2008).

    Article  Google Scholar 

  31. D. Lin, K. W. Kwok, and H. L. W. Chan, Solid State Ionics. 178, 1930 (2008).

    Google Scholar 

  32. K. Okazaki and K. Nagata, J. Am. Ceram. Soc. 56, 82 (1973).

    Article  Google Scholar 

  33. D. Q. Xiao, D. M. Lin, J. G. Zhu, and P. Yu, J. Electroceram. 16, 271 (2006).

    Article  Google Scholar 

  34. X. X. Wang, X. G. Tang, K. W. Kwok, H. L. W. Chan, and C. L. Choy, Appl. Phys. A. 80, 1071 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parkpoom Jarupoom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarupoom, P., Jaita, P. Enhanced magnetic performance of lead-free (Bi0.5Na0.5)TiO3-CoFe2O4 magnetoelectric ceramics. Electron. Mater. Lett. 11, 788–794 (2015). https://doi.org/10.1007/s13391-015-4497-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4497-z

Keywords

Navigation