Skip to main content
Log in

Dual-band microwave absorption properties of metamaterial absorber composed of split ring resonator on carbonyl iron powder composites

  • Original Article
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

This study investigated the dual-band absorption properties of metamaterial absorbers composed of a split ring resonator (SRR) on a grounded magnetic substrate. Polymer composites of carbonyl iron powders (CIP) of high permeability and magnetic loss were used as the substrate material. Computational tools were used to model the interaction between electromagnetic waves and materials with the SRR structure. For perpendicular polarization with an electric field (E) perpendicular to the SRR gap, dualband absorption peaks are predicted in the simulation result of reflection loss. Magnetic resonance resulting from antiparallel currents between the SRR and the ground plane is observed at the frequencies of two absorption peaks. The first strong absorption peak at the lower frequency (3.3 GHz) is due to magnetic resonance at the wire part of the SRR. The second absorption peak at the higher frequency (7.2 GHz) is due to magnetic resonance at the SRR split gap. The decreased capacitance with increased gap spacing moves the second absorption frequency to higher frequencies, while the first absorption peak is invariant with gap spacing. In the case of dual gaps at the opposite sides of the SRR, a single absorption peak is predicted due to the elimination of low-frequency resonance. For parallel polarization with the E-field parallel to the SRR gap, a single absorption peak is predicted, corresponding to magnetic resonance at the SRR wire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, and K. Inomata, J. Magn. Magn. Mater. 281, 195 (2004).

    Article  Google Scholar 

  2. L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, Inter. Mater. Rev. 58, 203 (2013).

    Article  Google Scholar 

  3. S. Yoshida, M. Sato, E. Sugawara, and Y. Shimada, J. Appl. Phys. 85, 4636 (1999).

    Article  Google Scholar 

  4. S. T. Kim, H. S. Cho, and S. S. Kim, IEEE Trans. Magn. 41, 3562 (2005).

    Article  Google Scholar 

  5. W. Li, T. Wu, W. Wang, P. Zhai, and J. Guan, J. Appl. Phys. 116, 044110 (2014).

    Article  Google Scholar 

  6. Z. Song, J. Xie, P. Zhou, X. Wang, T. Liu, and L. Deng, J. Alloys Compd. 551, 677 (2013).

    Article  Google Scholar 

  7. Y. Liu, Y. Feng, X. Wu, and X. Han, J. Alloys Compd. 520, 441 (2009).

    Article  Google Scholar 

  8. X. Shen, Y. Wang, X. Yang, L. Lu, and L. Huang, J. Mater. Sci.: Mater. Elect. 21, 630 (2010).

    Google Scholar 

  9. R. S. Meena, S. Bhattachrya, and R. Chatterjee, Mater. Sci. Eng. B, 25, 133 (2010).

    Article  Google Scholar 

  10. C. M. Watts, X. Liu, and W. J. Padilla, Adv. Mater. 24, 98 (2012).

    Google Scholar 

  11. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).

    Article  Google Scholar 

  12. A. Isenstadt and J. Xu, Electron. Mater. Lett. 9, 125 (2013).

    Article  Google Scholar 

  13. R. Gao, P. Shi, S. Liu, and J. Zhao, Electron. Mater. Lett. 10, 31 (2014).

    Article  Google Scholar 

  14. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, Opt. Lett. 31, 3620 (2006).

    Article  Google Scholar 

  15. M. Li, S. Liu, L. Guo, H. Lin, H. Yang, and B. Xiao, Opt. Comm. 295, 262 (2013).

    Article  Google Scholar 

  16. H. Wakatsuchi, S. Greedy, C. Christopoulos, and J. Paul, Opt. Express 18, 22187 (2010).

    Article  Google Scholar 

  17. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, Opt. Lett. 37, 154 (2012).

    Article  Google Scholar 

  18. H. Luo, T. Wang, R. Z. Gong, Y. Nie, and X. Wang, Chin. Phys. Lett. 28, 034204 (2011).

    Article  Google Scholar 

  19. H. Luo, Y. Z. Cheng, and R. Z. Gong, Eur. Phys. J. B, 81, 387 (2011).

    Article  Google Scholar 

  20. Y. Zou, L. Jiang, S. Wen, W. Shu, Y. Qing, Z. Tang, H. Luo, and D. Fan, Appl. Phys. Lett. 93, 261115 (2008).

    Article  Google Scholar 

  21. Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, Appl. Phys. Lett. 95, 241111 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, JH., Ryu, YH. & Kim, SS. Dual-band microwave absorption properties of metamaterial absorber composed of split ring resonator on carbonyl iron powder composites. Electron. Mater. Lett. 11, 447–451 (2015). https://doi.org/10.1007/s13391-015-4358-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4358-9

Keywords

Navigation