Skip to main content
Log in

Functionalized nanoparticle probes for protein detection

  • Original Article
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this Review, we discuss representative studies of recent advances in the development of nanoparticle-based protein detection methods, with a focus on the properties and functionalization of nanoparticle probes, as well as their use in detection schemes. We have focused on functionalized nanoparticle probes because they offer a number of advantages over conventional assays and because their use for detecting protein targets for diagnostic purposed has been demonstrated. In this report, we discuss nanoparticle probes classified by material type (gold, silver, silica, semiconductor, carbon, and virus) and surface functionality (antibody, aptamer, and DNA), which play a critical role in enhancing the sensitivity, selectivity, and efficiency of the detection systems. In particular, the synergistic function of each component of the nanoparticle probe is emphasized in terms of specific chemical and physical properties. This research area is in its early stages with many milestones to reach before nanoparticle probes are successfully applied in the field; however, the substantial ongoing efforts of researchers underline the great promise offered by nanoparticlebased probes for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bayne and J.-P. Liu, Mol. Cell. Endocrinol. 240, 11 (2005).

    Article  Google Scholar 

  2. J. Feng, W. D. Funk, S.-S. Wang, S. L. Weinrich, A. A. Avilion, C.-P. Chiu, R. R. Adams, E. Chang, R. C. Allsopp, J. Yu, S. Le, M. D. West, C. B. Harley, W. H. Andrews, C.W. Greider, and B. Villeponteau, Science 269, 1236 (1995).

    Article  Google Scholar 

  3. H. Fung and B. Demple, Mol. Cell 17, 463 (2005).

    Article  Google Scholar 

  4. J. L. Bell, J. Clin. Pathol. 22, 79 (1969).

    Article  Google Scholar 

  5. F. A. Armstrong, H. A. O. Hill, and N. J. Walton, AccountsChem. Res. 21, 407 (1988).

    Article  Google Scholar 

  6. D. P. Cowcher, Y. Xu, and R. Goodacre, Anal. Chem. 85,3297 (2013).

    Article  Google Scholar 

  7. I. Zerr, M. Bodemer, O. Gefeller, M. Otto, S. Poser, J. Wiltfang, O. Windl, H. A. Kretzschmar, and T. Weber, Ann.Neurol. 43, 32 (1998).

    Article  Google Scholar 

  8. G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Nat. Biotechnol. 23, 1294 (2005).

    Article  Google Scholar 

  9. Z. Xiao, D. Prieto, T. P. Conrads, T. D. Veenstra, and H. J. Issaq, Mol. Cell. Endocrinol. 230, 95 (2005).

    Article  Google Scholar 

  10. M. Christiansen, C. K. Høgdall, J. R. Andersen, and B. Nørgaard-Pedersen, Scand. J. Clin. Lab. Invest. 61, 205 (2001).

    Article  Google Scholar 

  11. H. A. Hobbs, D. V. R. Reddy, R. Rajeshwari, and A. S. Reddy, Plant Dis. 71, 747 (1987).

    Article  Google Scholar 

  12. C. K. Turner, T. M. Blieden, T. J. Smith, S. E. Feldon, D. C. Foster, P. J. Sime, and R. P. Phipps, J. Immunol. Methods 291, 63 (2004).

    Article  Google Scholar 

  13. A.-M. Teppo and C. P. J. Maury, Clin. Chem. 33, 2024(1987).

    Google Scholar 

  14. A. K. Drukier, N. Ossetrova, E. Schors, L. R. Brown, J. Tomaszewski, R. Sainsbury, and J. Godovac-Zimmermann,J. Proteome Res. 4, 2375 (2005).

    Article  Google Scholar 

  15. K. Z. Liang and W. J. Mu, Anal. Chim. Acta 580, 128(2006).

    Article  Google Scholar 

  16. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B.J. Wiley, and Y. Xia, Nano Lett. 5, 2034 (2005).

    Article  Google Scholar 

  17. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar,Phys. Rev. Lett. 97, 017402 (2006).

    Article  Google Scholar 

  18. J. Zheng, C. Zhang, and R. M. Dickson, Phys. Rev. Lett. 93,077402 (2004).

    Article  Google Scholar 

  19. K. Aslan, J. R. Lakowicz, and C. D. Geddes, Anal. Bioanal.Chem. 382, 926 (2005).

    Article  Google Scholar 

  20. J. Zhang, S. Xu, and E. Kumacheva, Adv. Mater. 17, 2336(2005).

    Article  Google Scholar 

  21. X. Luo, A. Morrin, A. J. Killard, and M. R. Smyth, Electroanalysis 18, 319 (2006).

    Article  Google Scholar 

  22. A. Yu, Z. Liang, J. Cho, and F. Caruso, Nano Lett. 3, 1203(2003).

    Article  Google Scholar 

  23. Y. Zhang, X. Cui, F. Shi, and Y. Deng, Chem. Rev. 112,2467 (2012).

    Article  Google Scholar 

  24. Z.-J. Jiang, C.-Y. Liu, and L.-W. Sun, J. Phys. Chem. B109, 1730 (2005).

    Article  Google Scholar 

  25. K. Nishioka, T. Sueto, and N. Saito, Appl. Surf. Sci. 255,9504 (2009).

    Article  Google Scholar 

  26. V. Polshettiwar and R. S. Varma, Green Chem. 12, 743(2010).

    Article  Google Scholar 

  27. T. Yonezawa, S.-Y. Onoue, and N. Kimizuka, Chem. Lett.31, 528 (2002).

    Article  Google Scholar 

  28. J. F. Hicks, Y. Seok-Shon, and R. W. Murray, Langmuir 18,2288 (2002).

    Article  Google Scholar 

  29. M. Munakata, L. P. Wu, T. Kuroda-Sowa, M. Maekawa, Y.Suenaga,_G. L. Ning, and T. Kojima, J. Am. Chem. Soc.120, 8610 (1998).

    Article  Google Scholar 

  30. H. Jiang, K.-S. Moon, J. Lu, and C. P. Wong, J. Electron.Mater. 34, 1432 (2005).

    Article  Google Scholar 

  31. R. Jordan, N. West, A. Ulman, Y.-M. Chou, and O. Nuyken,Macromolecules 34, 1606 (2001).

    Article  Google Scholar 

  32. J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, Br. J. Radiol. 79, 248 (2006).

    Article  Google Scholar 

  33. G. Zhao and S. E. Stevens, Jr., Biometals 11, 27 (1998).

    Article  Google Scholar 

  34. S. N. Heo, K. Y. Park, Y. J. Seo, F. Ahmed, M. S. Anwar, and B. H. Koo, Electron. Mater. Lett. 9, 261 (2013).

    Article  Google Scholar 

  35. C.-H. Lee, D.-J. Choi, and Y.-J. Oh, Electron. Mater. Lett.9, 283 (2013).

    Article  Google Scholar 

  36. S. Sharma and S. Chawla, Electron. Mater. Lett. 9, 267(2013).

    Article  Google Scholar 

  37. Y. Lu, Y. Yin, B. T. Mayers, and Y. Xia, Nano Lett. 2, 183(2002).

    Article  Google Scholar 

  38. Y.-X. Wang, S. M. Hussain, and G. P. Krestin, Eur. Radiol.11, 2319 (2001).

    Article  Google Scholar 

  39. R. Weissleder, D. D. Stark, B. L. Engelstad, B. R. Bacon, C. C. Compton, D. L. White, P. Jacobs, and J. Lewis, Am.J. Roentgenol. 152, 167 (1989).

    Article  Google Scholar 

  40. A. S. Teja and P.-Y. Koh, Prog. Cryst. Growth Charact.Mater. 55, 22 (2009).

    Article  Google Scholar 

  41. X.-J. Wu, R. Jiang, B. Wu, X.-M. Su, X.-P. Xu, and S.-J. Ji,Adv. Synth. Catal. 351, 3150 (2009).

    Article  Google Scholar 

  42. F. Shi, M. K. Tse, M.-M. Pohl, J. Radnik, A. Brückner, S. Zhang, and M. Beller, J. Mol. Catal. A-Chem. 292, 28(2008).

    Article  Google Scholar 

  43. Y. Wang, K. Lee, and J. Irudayaraj, Chem. Commun. 46,613 (2010).

    Article  Google Scholar 

  44. E. Katz and I. Willner, Angew. Chem.-Int. Edit. 43, 6042(2004).

    Article  Google Scholar 

  45. A. D. Ellington and J. W. Szostak, Nature 346, 818 (1990).

    Article  Google Scholar 

  46. J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry,6th Edition, pp. 87–88, W. H. Freeman and Company, NewYork, USA (2007).

    Google Scholar 

  47. G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R.E. McLaughlin, and L. Tamarkin, Drug Deliv. 11, 169(2004).

    Article  Google Scholar 

  48. J. Kaur, K. V. Singh, R. Boro, K. R. Thampi, M. Raje, G. C. Varshney, and C. R. Suri, Environ. Sci. Technol. 41, 5028(2007).

    Article  Google Scholar 

  49. S. Thobhani, S. Attree, R. Boyd, N. Kumarswami, J. Noble, M. Szymanski, and R. A. Porter, J. Immunol. Methods 356, 60 (2010).

    Article  Google Scholar 

  50. W. P. Faulk and G. M. Taylor, Immunochemistry 8, 1081(1971).

    Google Scholar 

  51. M. Liu, C. Jia, Y. Huang, X. Lou, S. Yao, Q. Jin, J. Zhao, and J. Xiang, Analyst 135, 327 (2010).

    Article  Google Scholar 

  52. J. Yan, S. Song, B. Li, Q. Zhang, Q. Huang, H. Zhang, and C. Fan, Small 6, 2520 (2010).

    Article  Google Scholar 

  53. X. Liu and Q. Huo, J. Immunol. Methods 349, 38 (2009).

    Article  Google Scholar 

  54. J. Bogdanovic, J. Colon, C. Baker, and Q. Huo, Anal. Biochem.405, 96 (2010).

    Article  Google Scholar 

  55. J. Zhou, L. Du, L. Zou, Y. Zou, N. Hu, and P. Wang, Sens.Actuator B-Chem. 197, 220 (2014).

    Article  Google Scholar 

  56. L.-J. Ou, P.-Y. Jin, X. Chu, J.-H. Jiang, and R.-Q. Yu, Anal.Chem. 82, 6015 (2010).

    Article  Google Scholar 

  57. H. Pandana, K. H. Aschenbach, and R. D. Gomez, IEEESens. J. 8, 661 (2008).

    Google Scholar 

  58. B.-H. Kim, I. S. Yoon, and J.-S. Lee, Anal. Chem. 85,10542 (2013).

    Article  Google Scholar 

  59. M. J. Kwon, J. Lee, A. W. Wark, and H. J. Lee, Anal.Chem. 84, 1702 (2012).

    Article  Google Scholar 

  60. S. H. Baek, A. W. Wark, and H. J. Lee, Anal. Chem. 86,9824 (2014).

    Article  Google Scholar 

  61. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff,Nature 382, 607 (1996).

    Article  Google Scholar 

  62. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, Science 277, 1078 (1997).

    Article  Google Scholar 

  63. J.-H. Oh and J.-S. Lee, Chem. Commun. 46, 6382 (2010).

    Article  Google Scholar 

  64. N. L. Rosi and C. A. Mirkin, Chem. Rev. 105, 1547 (2005).

    Article  Google Scholar 

  65. J. Liu and Y. Lu, Angew. Chem.-Int. Edit. 45, 90 (2005).

    Article  Google Scholar 

  66. J. Liu and Y. Lu, J. Am. Chem. Soc. 125, 6642 (2003).

    Article  Google Scholar 

  67. J.-H. Oh and J.-S. Lee, Anal. Chem. 83, 7364 (2011).

    Article  Google Scholar 

  68. S. H. Han and J.-S. Lee, Langmuir 28, 828 (2012).

    Article  Google Scholar 

  69. H.-G. Park, J.-H. Oh, and J.-S. Lee, Anal. Chem. 83, 4989(2011).

    Article  Google Scholar 

  70. J.-H. Oh, S.-H. Han, H.-G. Park, and J.-S. Lee, Bull.Korean Chem. Soc. 33, 329 (2012).

    Article  Google Scholar 

  71. J.-Y. Kim and J.-S. Lee, Bull. Korean Chem. Soc. 33, 221(2012).

    Article  Google Scholar 

  72. H.-G. Park, J. H. Joo, H.-G. Kim, and J.-S. Lee, J. Phys.Chem. C 116, 2278 (2012).

    Article  Google Scholar 

  73. S. H. Han, L. S. Park, and J.-S. Lee, J. Mater. Chem. 22,20223 (2012).

    Article  Google Scholar 

  74. J. H. Joo and J.-S. Lee, Anal. Chem. 85, 6580 (2013).

    Article  Google Scholar 

  75. H.-J. Zhang, Y.-H. Lu, Y.-J. Long, Q.-L. Wang, X.-X. Huang, R. Zhu, X.-L. Wang, L.-P. Liang, P. Teng, and H.-Z. Zheng,Anal. Methods 6, 2982 (2014).

    Article  Google Scholar 

  76. J. I. L. Chen, H. Durkee, B. Traxler, and D. S. Ginger,Small 7, 1993 (2011).

    Article  Google Scholar 

  77. N. Guarrotxena and G. C. Bazan, Adv. Mater. 26, 1941(2014).

    Article  Google Scholar 

  78. M. Kahraman, I. Sur, and M. Culha, Anal. Chem. 82, 7596 (2010).

    Article  Google Scholar 

  79. B. Lutz, C. Dentinger, L. Sun, L. Nguyen, J. Zhang, A. J. Chmura, A. Allen, S. Chan, and B. K. Knudsen, J. Histochem.Cytochem. 56, 371 (2008).

    Article  Google Scholar 

  80. H. Wu, Q. Huo, S. Varnum, J. Wang, G. Liu, Z. Nie, J. Liu, and Y. Lin, Analyst 133, 1550 (2008).

    Article  Google Scholar 

  81. Y. Wang, K.-Y. Pu, and B. Liu, Langmuir 26, 10025(2010).

    Article  Google Scholar 

  82. D. Yang, J. Ma, M. Gao, M. Peng, Y. Luo, W. Hui, C. Chen, Z. Wang, and Y. Cui, RSC Adv. 3, 9681 (2013).

    Article  Google Scholar 

  83. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G.M. Whitesides, Chem. Rev. 105, 1103 (2005).

    Article  Google Scholar 

  84. J.-A. A. Ho, Y.-C. Lin, L.-S. Wang, K.-C. Hwang, and P.-T. Chou, Anal. Chem. 81, 1340 (2009).

    Article  Google Scholar 

  85. H. Zhang, Y. Xu, Q. Huang, C. Yi, T. Xiao, and Q. Li,Chem. Commun. 49, 3778 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D.H., Lee, JS. Functionalized nanoparticle probes for protein detection. Electron. Mater. Lett. 11, 336–345 (2015). https://doi.org/10.1007/s13391-014-4383-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4383-0

Keywords

Navigation