Skip to main content
Log in

Hydrothermally grown boron-doped ZnO nanorods for various applications: Structural, optical, and electrical properties

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The structural, optical, and electrical properties of ZnO and BZO nanorods were investigated using fieldemission scanning electron microscopy, x-ray diffraction (XRD), photoluminescence (PL), and van der Pauw Hall-effect measurements. All the nanorods had grown well on the ZnO seed layers and were hexagonal. The BZO nanorods were shorter than the undoped ZnO nanorods, and the BZO nanorods grew shorter with increasing concentration of B to 2.0 at. % while the average length of the nanorods doped with 2.5 at. % B increased from 1620 to 1830 nm. The XRD patterns suggest that the amount of residual stress in the nanorods decreased with increasing concentration of B in the nanorods. The PL spectra showed near-bandedge and deep-level emissions, and B doping also varied the PL properties of the ZnO nanorods. The Halleffect data suggest that B doping also varied the electrical properties such as the carrier concentration, mobility, and resistivity of the ZnO nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Z. Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. A. Suleiman, A. E. Shaer, A. C. Mofor, B. Postels, A. Waag, N. Boukos, A. Trvalos, H. S. Kwack, J. Guinard, and D. L. S. Dang, Nonotechnology 20, 332001 (2009).

    Article  Google Scholar 

  2. S. Kim, M. S. Kim, K. G. Yim, G. Nam, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, J. Korean Phys. Soc. 60, 1599 (2012).

    Article  Google Scholar 

  3. R. C. Pawar, J. S. Shaikh, S. S. Suryavanshi, and P. S. Patil, Curr. Appl. Phys. 12, 778 (2012).

    Article  Google Scholar 

  4. R. C. Pawar, H.-S. Kim, and C. S. Lee, Scripta Mater. 68, 142 (2013).

    Article  Google Scholar 

  5. R. C. Pawar, J.-W. Lee, V. B. Patil, and C. S. Lee, Sensor. Actuat. B: Chem. (in press).

  6. A. Tubtimtae and M.-W. Lee, Superlattices. Microstruct. 52, 987 (2012).

    Article  Google Scholar 

  7. H. Yang, J.-S. Lee, S. Bae, and J. H. Hwang, Curr. Appl. Phys. 9, 797 (2009).

    Article  Google Scholar 

  8. T.-H. Fang and S.-H. Kang, J. Phys. D: Appl. Phys. 41, 245303 (2008).

    Article  Google Scholar 

  9. F. S.-S. Chien, C.-R. Wang, Y.-L. Chan, and H.-L. Lin, Sens. Actuators, B 144, 120 (2010).

    Article  Google Scholar 

  10. S. Oh, M. Jung, J. Koo, Y. Cho, S. Choi, S. Yi, G. Kil, and J. Chang, Physica E, 42, 2285 (2010).

    Article  Google Scholar 

  11. S. Kim, G. Nam, H. Park, H. Yoon, S.-H. Lee, J. S. Kim, J. S. K im, D. Y. K im, S.-O. K im, and J.-Y. L eem, Bull. Korean Chem. Soc. 34, 1205 (2013).

    Article  Google Scholar 

  12. D. Y. Kim, S.-O. Kim, M. S. Kim, K. G. Yim, S. Kim, G. Nam, D.-Y. Lee, and J.-Y. Leem, J. Korean Phys. Soc. 60, 9498 (2012).

    Google Scholar 

  13. Z. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, Nat. Mater. 2, 821 (2003).

    Article  Google Scholar 

  14. Q. Yu, L. Li, H. Li, S. Gao, D. Sang, J. Yuan, and P. Zhu, Appl. Surf. Sci. 257, 5984 (2011).

    Article  Google Scholar 

  15. V. Kumar, R. G. Singh, L. P. Purohit, and R. M. Mehra, J. Mater. Sci. Technol. 27, 481 (2011).

    Article  Google Scholar 

  16. S. Kim, M. S. Kim, G. Nam, and J.-Y. Leem, Electron. Mater. Lett. 8, 445 (2012).

    Article  Google Scholar 

  17. B. G. Choi, I. H. Kim, D. H. Kim, K. S. Lee, T. S. Lee, B. Cheong, Y.-J. Baik, and W. M. Kim, J. Eur. Ceram. Soc. 25, 2161 (2005).

    Article  Google Scholar 

  18. L. Zhu, J. Li, Z. Ye, H. He, X. Chen, and B. Zhao, Opt. Mater. 31, 237 (2008).

    Article  Google Scholar 

  19. G. Pineda-Hernandez, A. Escobedo-Morales, U. Pal, and E. Chigo-Anota, Mater. Chem. Phys. 135, 810 (2012).

    Article  Google Scholar 

  20. A. E. Morales, M. H. Zaldivar, and U. Pal, Opt. Mater. 29, 100 (2006).

    Article  Google Scholar 

  21. T.-H. Fang and S.-H. Kang, Curr. Appl. Phys. 10, 1076 (2010).

    Article  Google Scholar 

  22. J. Jie, G. Wang, X. Han, and J. G. Hou, J. Phys. Chem. B 108, 17027 (2004).

    Article  Google Scholar 

  23. L. Xu, Y. Su. Y. Chen, H. Xia, L. Zhu, Q. Zhou, and S. Li, J. Phys. Chem. B 110, 6637 (2006).

    Article  Google Scholar 

  24. M. Snure and A. Tiwari, J. Appl. Phys. 104, 073707 (2008).

    Article  Google Scholar 

  25. X. G. Xu, H. L. Yang, Y. Wu, D. L. Zhang, S. Z. Wu, J. Miao, Y. Jiang, X. B. Qin, X. Z. Cao, and B. Y. Wang, Appl. Phys. Lett. 97, 232502 (2010).

    Article  Google Scholar 

  26. B. N. Pawar, G. Cai, D. Ham, R. S. Mane, T. Ganesh, A. Ghule, R. Sharma, K. D. Jadhava, and S.-H. Han, Sol. Energ. Mat. Sol. C. 93, 524 (2009).

    Article  Google Scholar 

  27. J. Steinhauser, S. Fay, N. Oliveria, E. Vallat-Sauvain, and C. Ballif, Appl. Phys. Lett. 90, 142107 (2007).

    Article  Google Scholar 

  28. S. Colis, H. Bieber, S. B-Colin, G. Schmerber, C. Leuvrey, and A. Dinia, Chem. Phys. Lett. 422, 529 (2006).

    Article  Google Scholar 

  29. S. Deka and P. A. Joy, Solid State Commun. 142, 190 (2007).

    Article  Google Scholar 

  30. J.-S. Hur, J. Kim, S. Jang, J.-B. Song, D. Byun, C.-S. Son, J. H. Yun, and K. H. Yoon, J. Korean Phys. Soc. 53, 442 (2008).

    Article  Google Scholar 

  31. Q. Yu, J. Li, H. Li, Q. Wang, S. Cheng, and L. Li, Chem. Phys. Lett. 539, 74 (2012).

    Article  Google Scholar 

  32. B. Gupta, A. Jain, and R. M. Mehra, J. Mater. Sci. Technol. 26, 223 (2010).

    Article  Google Scholar 

  33. S. Fujihara, A. Suzuki, and T. Kimura, J. Appl. Phys. 94, 2411 (2003).

    Article  Google Scholar 

  34. W.-J. Li, E.-W. Shi, W.-Z. Zhong, and Z.-W. Yin, J. Cryst. Growth 203, 186 (1999).

    Article  Google Scholar 

  35. R.B. Heller, J. McGannon, and A. H. Weber, J. Appl. Phys. 21, 1283 (1950).

    Article  Google Scholar 

  36. G. Nam, S. Kim, M. S. Kim, K. G. Yim, D. Y. Kim, S.-O. Kim, and J.-Y. Leem, J. Korean Phys. Soc. 59, 129 (2011).

    Article  Google Scholar 

  37. J.-W. Jeon, M. Kim, L.-W. Jang, J. L. Hoffman, N. S. Kim, and I.-H. Lee, Electron. Mater. Lett. 8, 27 (2012).

    Article  Google Scholar 

  38. M. S. Kim, K. G. Yim, S. Kim, G. Nam, D.-Y. Lee, J. S. Kim, J. S. Kim, and J.-Y. Leem, J. Korean Phys. Soc. 59, 2354 (2011).

    Article  Google Scholar 

  39. S. Kim, G. Nam, K. G. Yim, J. Lee, Y. Kim, and J.-Y. Leem, Electron. Mater. Lett. 9, 293 (2013).

    Article  Google Scholar 

  40. F. Tuomisto, K. Saarinen, D. C. Look, and G. C. Farlow, Phys. Rev. B 72, 085206 (2005).

    Article  Google Scholar 

  41. A. B. Djurisic, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, and S. Gwo, Appl. Phys. Lett. 88, 103107 (2006).

    Article  Google Scholar 

  42. B. N. Pawar, S. R. Jadkar, and M. G. Takwale, J. Phys. Chem. Solids 66, 1779 (2005).

    Article  Google Scholar 

  43. F. Ruske, M. Roczen, K. Lee, M. Wimmer, S. Gall, J. Hupkes, D. Hrunski, and B. Rech, J. Appl. Phys. 107, 013708 (2010).

    Article  Google Scholar 

  44. S. Lany and A. Zunger, Phys. Rev. Lett. 98, 045501 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Young Leem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Park, H., Nam, G. et al. Hydrothermally grown boron-doped ZnO nanorods for various applications: Structural, optical, and electrical properties. Electron. Mater. Lett. 10, 81–87 (2014). https://doi.org/10.1007/s13391-013-3130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3130-2

Keywords

Navigation