Skip to main content
Log in

Azopyridine molecular conductor: A superior device for molecular switch technology

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The electron transport through a single molecular conductor consisting of an azopyridine (AZP) sandwiched between Au electrodes has been investigated using the nonequilibrium Green’s function formalism combined with the DFT method. We show that when AZP converts between its trans and cis conformations, this simple molecular device switches between a strongly and a weakly conducting state. We also found that the trans isomer can exhibit novel NDR behavior which can be used as the basis of memory, switching and logic functionality. The switching behavior and NDR characteristic are rationalized by analyzing the device transmission coefficients and electronic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nitzan and M. A. Ratner, Science 300, 1384 (2003).

    Article  CAS  Google Scholar 

  2. N. J. Tao, Nature Nanotech. 1, 173 (2006).

    Article  CAS  Google Scholar 

  3. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997).

    Article  CAS  Google Scholar 

  4. R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van Hemert, and J. M. van Ruitenbeek, Nature 419, 906 (2002).

    Article  CAS  Google Scholar 

  5. G. V. Nazin, X. H. Qiu, and W. Ho, Science 302, 77 (2003).

    Article  CAS  Google Scholar 

  6. S. Yasutomi, T. Morita, Y. Imanishi, and S. A. Kimura, Science 304, 1944 (2004).

    Article  CAS  Google Scholar 

  7. R. Pati and S. P. Karna, Phys. Rev. B 69, 155419 (2004).

    Article  Google Scholar 

  8. F. Chen, J. He, C. Nuckolls, T. Roberts, J. E. Klare, and S. A. Lindsay, Nano Lett. 5, 503 (2005).

    Article  CAS  Google Scholar 

  9. N. Katsonic, T. Kudernac, M. Walko, S. J. van der Molen, B. J. van Wees, and B. L. Feringa, Adv. Mater. 18, 1397 (2006).

    Article  Google Scholar 

  10. M. Del Valle, R. G. Rrez, C. Tejedor, and G. Cuniberti, Nature Nanotech. 2, 176 (2007).

    Article  Google Scholar 

  11. J. M. Seminario, P. A. Derosa, and J. L. Bastos, J. Am. Chem. Soc. 124, 10266 (2002).

    Article  CAS  Google Scholar 

  12. R. Gutiérrez, G. Fagas, G. Cuniberti, F. Grossmann, R. Schmidt, and K. Richter, Phys. Rev. B 65, 113410 (2002).

    Article  Google Scholar 

  13. P. Orellana and F. A. Claro, Phys. Rev. Lett. 90, 178302 (2003).

    Article  CAS  Google Scholar 

  14. E. G. Emberly and G. Kirczenow, Phys. Rev. Lett. 91, 188301 (2003).

    Article  Google Scholar 

  15. B. L. Feringa, Molecular Switches, p. 81, Wiley-VCH: Weinheim (2001).

    Book  Google Scholar 

  16. C. Zhang, M. H. Du, H. P. Cheng, X. G. Zhang, A. E. Roitberg, and J. L. Krause, Phys. Rev. Lett. 92, 158301 (2004).

    Article  CAS  Google Scholar 

  17. J. Henzl, M. Mehlhorn, H. Gawronski, K. H. Rieder, and K. Morgenstern, Angew. Chem. Int. Ed. 45, 603 (2006).

    Article  CAS  Google Scholar 

  18. B. Y. Choi, S. J. Kahng, S. Kim, H. Kim, H. W. Kim, Y. J. Song, J. Ihm, and Y. Kuk, Phys. Rev. Lett. 96, 156106 (2006).

    Article  Google Scholar 

  19. M. Alemani, S. Selvanathan, F. Ample, M. V. Peters, K. H. Rieder, F. Moresco, C. Joachim, S. Hecht, and L. J. Grill, J. Phys. Chem. C 112, 10509 (2008).

    Article  CAS  Google Scholar 

  20. C. Dri, M. V. Peters, J. Schwarz, S. Hecht, and L. Grill, Nature Nanotechnol. 3, 649 (2008).

    Article  CAS  Google Scholar 

  21. D. Nozaki and G. Cuniberti, Nano Res. 2, 648 (2009).

    Article  CAS  Google Scholar 

  22. M. D. Ganji and A. Mir-Hashemi, Phys. Lett. A 372, 3058 (2008).

    Article  CAS  Google Scholar 

  23. M. D. Ganji and F. Nourozi, Physica E 40, 2606 (2008).

    Article  CAS  Google Scholar 

  24. M. D. Ganji and A. Mohammadi-nejad, Phys. Lett. A 372, 4839 (2008).

    Article  CAS  Google Scholar 

  25. P. Zhao, P. J. Wang, Z. Zhang, and D. S. Liu, Physica B 405, 446 (2010).

    Article  CAS  Google Scholar 

  26. R. X. Zhang, G. H. Ma, R. Li, Z. K. Qian, Z. Y. Shen, X. Y. Zhao, S. M. Hou, and S. Sanvito, J. Phys., Condens. Matter 21, 335301 (2009).

    Article  Google Scholar 

  27. C. Toher and S. Sanvito, Phys. Rev. B 77, 155402 (2008).

    Article  Google Scholar 

  28. S. Martin, D. Z. Manrique, V. M. Garcia-Suarez, W. Haiss, S. J. Higgins, C. J. Lambert, and R. J. Nichols, Nanotechnology 20, 125203 (2009).

    Article  Google Scholar 

  29. G. S. Tulevski, M. B. Myers, M. S. Hybertsen, M. L. Steigerwald, and C. Nuckolls, Science 309, 591 (2005).

    Article  CAS  Google Scholar 

  30. C. Toher and S. Sanvito, Phys. Rev. Lett. 99, 056801 (2007).

    Article  CAS  Google Scholar 

  31. W. Kohn and L. Sham, Phys. Rev. A 140, 1133 (1965).

    Google Scholar 

  32. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  33. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  CAS  Google Scholar 

  34. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  35. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. J. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002).

    Article  CAS  Google Scholar 

  36. M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

  37. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics Benjamin/Cummings, p. 35, Benjamin, New York (1962).

    Google Scholar 

  38. S. Datta, Electronic Transport in Mesoscopic System, p. 102, Cambridge University Press, Cambridge (1995).

    Google Scholar 

  39. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).

    Article  Google Scholar 

  40. Z. Zhuang, X. Shang, X. Wang, W. Ruan, and B. Zhao, Spectrochimica Acta Part A 72, 954 (2009).

    Article  Google Scholar 

  41. K. Stokbro, J. Taylor, M. Brandbyge, J. L. Mozos, and P. Ordejon, Comp. Mat. Sci. 27, 151 (2003).

    Article  CAS  Google Scholar 

  42. A. L. Mc Whorter and A. G. Foyt, Appl. Phys. Lett. 9, 300 (1966).

    Article  Google Scholar 

  43. E. R. Brown, J. R. Sdöerstrmö, C. D. Parker, L. J. Mahoney, and K. M. Molvar, Appl. Phys. Lett. 58, 2291 (1991).

    Article  CAS  Google Scholar 

  44. R. H. Mathews, J. P. Sage, T. C. L. G. Sollner, S. D. Calawa, C. L. Chen, L. J. Mahoney, P. A. Maki, and K. M. Molvar, Proc. IEEE 87, 596 (1999).

    Article  Google Scholar 

  45. S. Sen and S. J. Chakrabarti, J. Phys. Chem. C 112, 1685 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Darvish Ganji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganji, M.D. Azopyridine molecular conductor: A superior device for molecular switch technology. Electron. Mater. Lett. 8, 565–570 (2012). https://doi.org/10.1007/s13391-012-2077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2077-z

Keywords

Navigation