Skip to main content
Log in

Effects of dislocations on the carrier transport and optical properties of GaN films grown with an in-situ SiN x insertion layer

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, we report on the growth and properties of GaN epitaxial layer with SiNx insertion layer grown in-situ by metal organic chemical vapor deposition (MOCVD). X-ray diffraction and atomic force microscopy measurements revealed that superior crystalline quality with low dislocation density and a smoother surface could be obtained when an in-situ SiNx layer was inserted into the GaN film. Hall measurements and low-temperature photoluminescence (LT-PL) measurements showed improved electrical transport and optical properties for these GaN layers, respectively, suggesting the reduction of electron scattering and non-radiative centers. These results indicate that an in situ SiNx insertion layer can efficiently suppress dislocations caused by lattice mismatch between sapphire substrate and epitaxial layer. Furthermore, the PL showed anomalous temperature dependent behavior: The peak energy first decreased, then increased, and finally decreased again with increasing temperature (the so-called inverted S-shape). These phenomena suggest strong localization of carriers in GaN films with SiNx insertion layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wu, J. Appl. Phys. 106, 011101 (2009).

    Article  Google Scholar 

  2. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett. 72, 211 (1998).

    Article  CAS  Google Scholar 

  3. S. Einfeldt, A. M. Roskowski, E. A. Preble, and R. F. Davis, Appl. Phys. Lett. 80, 953 (2003).

    Article  Google Scholar 

  4. S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, J. Cryst. Growth 221, 334 (2000).

    Article  CAS  Google Scholar 

  5. J. Xie, U. Ozgur, Y. Fu, C, K. Inoki, T. S. Kuan, J. V. Foreman, H. O. Everitt, X. Ni, and H. Morkoc, Appl. Phys. Lett. 90, 041107 (2007).

    Article  Google Scholar 

  6. J. Hertkorn, F. Lipski, P. Bruckner, T. Wunderer, S. B. Thapa, F. Scholz, A. Chuvilin, U. Kaiser, M. Beer, and J. Zweck, J. Cryst. Growth 310, 4867 (2008).

    Article  CAS  Google Scholar 

  7. R.-C. Tu, C.-C. Chuo, S.-M. Pan, Y.-M. Fan, C.-E. Tsai, T.-C. Wang, C.-J. Tun, G.-C. Chi, B.-C. Lee, and C.-P. Lee, Appl. Phys. Lett. 83, 3608 (2003).

    Article  CAS  Google Scholar 

  8. S.-E. Park, S.-M. Lim, C.-R. Lee, C.-S. Kim, and B. S. O, J. Cryst. Growth 249, 487 (2000).

    Article  Google Scholar 

  9. K. J. Lee, E. H. Shin, and K. Y. Lim, Appl. Phys. Lett. 85, 1502 (2004).

    Article  CAS  Google Scholar 

  10. A. Chakraborty, K. C. Kim, F. Wu, J. S. Speck, S. P. Den-Baars, and U. K. Mishra, Appl. Phys. Lett. 89, 041903 (2006).

    Article  Google Scholar 

  11. M. Zhu, S. You, T. Detchprohm, T. Paskova, E. A. Preble, D. Hanser, and C. Wetzel, Phys. Rev. B 81, 125325 (2005).

    Article  Google Scholar 

  12. H. Morkoc, Handbook of Nitride Semiconductors and Devices, Springer, Heidelberg (1999).

    Book  Google Scholar 

  13. H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, Appl. Phys. Lett. 77, 2145 (2000).

    Article  CAS  Google Scholar 

  14. Y. J. Sun, O. Brandt, T. Y. Liu, A. Trampert, K. H. Ploog, J. Bläsing, and A. Krost, Appl. Phys. Lett. 81, 4928 (2002).

    Article  CAS  Google Scholar 

  15. P. Gay, P. B. Hirsch, and A. Kelly, Acta Metall. 1, 315 (1953).

    Article  CAS  Google Scholar 

  16. V. Srikant, J. S. Speck, and D. R. Clarke, J. Appl. Phys. 82, 4286 (1997).

    Article  CAS  Google Scholar 

  17. S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske, and C. R. Abernathy, Appl. Phys. Lett. 86, 241904 (2005).

    Article  Google Scholar 

  18. V. M. kaganer, O. Brandt, A. Trampert, and K. H. Ploog, Phys. Rev. B 72, 045423 (2005).

    Article  Google Scholar 

  19. J. L. Rouviere, M. Arlery, B. Daudin, G. Feuillet, and O. Briot, Mater. Sci. Eng. B 50, 61 (1997).

    Article  Google Scholar 

  20. F. A. Ponce, D. Cherns, W. T. Young, and J. W. Steeds, Appl. Phys. Lett. 69, 770 (1996).

    Article  CAS  Google Scholar 

  21. M. J. kapper, R. Datta, R. A. Oliver, F. D. G. Rayment, M. E. Vickers, and D. J. Humphreys, J. Cryst. Growth 300, 70 (2007).

    Article  Google Scholar 

  22. N. G. Weimann and L. F. Eastman, J. Appl. Phys. 83, 3656 (1998).

    Article  CAS  Google Scholar 

  23. A. Krtschil, A. Dadgar, and A. Krost, Appl. Phys. Lett. 82, 2263 (2003).

    Article  CAS  Google Scholar 

  24. J. Wang, J. B. Jeon, Y. M. Sirenko, and K. W. Kim, IEEE J. Photo. Tech. Lett. 9, 728 (1996).

    Article  Google Scholar 

  25. T. Yamamoto, M. Kasu, S. Noda, and A. Sasaki, J. Appl. Phys. 68, 5318 (1990).

    Article  CAS  Google Scholar 

  26. H. M. Cheong, B. Fluegel, M. C. Hanna, and A. Mascarenhas, Phys. Rev. B 58, R4254 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Kyung Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y.S., Chung, S.J. & Suh, EK. Effects of dislocations on the carrier transport and optical properties of GaN films grown with an in-situ SiN x insertion layer. Electron. Mater. Lett. 8, 141–146 (2012). https://doi.org/10.1007/s13391-012-1082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-1082-6

Keywords

Navigation