Skip to main content

Advertisement

Log in

Optimization of Quaternary Blended Cement for Eco-Sustainable Concrete Mixes Using Response Surface Methodology

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The substantial amount of CO2 emissions associated with the production of cement leads to an arising requisite for blending the cement with supplementary cementitious materials (SCMs). This study targets the production of a quaternary blended cement that exhibits the highest performance in terms of sustainability, mechanical and durability characteristics. Fly ash, glass powder and nanosilica of up to 30, 15 and 3%, respectively, were used in this study as SCMs. Dosages of the various SCMs used were optimized to maximize the 28th-day compressive strength and minimize chloride ion penetration, while minimizing the cement content using the response surface method. The ANOVA analysis showed high significance of the nanosilica and glass powder contents in determining the compressive strength, whereas fly ash content presumed insignificant effect on it. Fly ash, nanosilica and glass powder contents have been demonstrated significant in their effects on the resistance against chloride ions penetration. An optimal mixture containing 20% fly ash, 1.9% nanosilica and 15% glass powder as partial replacements of cement was found to have a sustainable concrete with the lowest cement content, 46.56 MPa of compressive strength and 688.98-C total chloride ion passing at 28-day age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Papatzani, S.; Paine, K.: Optimisation of low-carbon footprint quaternary and quinary (37% fly ash) cementitious nanocomposites with polycarboxylate or aqueous nanosilica particles. Adv. Mater. Sci. Eng. 2019, 5931306 (2019)

    Article  Google Scholar 

  2. Müller, H.S.; Breiner, R.; Moffatt, J.S.; Haist, M.: Design and properties of sustainable concrete. Procedia Eng. 95, 290–304 (2014). https://doi.org/10.1016/j.proeng.2014.12.189

    Article  Google Scholar 

  3. Awolusi, T.; Taiwo, A.; Aladegboye, O.; Oguntayo, D.: Materials Today: proceedings optimisation of quinary blended supplementary cementitious material for eco-friendly paving unit using taguchi orthogonal array design. Mater. Today Proc. 65, 2221–2227 (2022). https://doi.org/10.1016/j.matpr.2022.06.263

    Article  Google Scholar 

  4. Du, S.; Zhao, Q.; Shi, X.: High-volume fly ash-based cementitious composites as sustainable materials : an overview of recent advances. Adv. Civil Eng. 2021, 1–22 (2021)

    Google Scholar 

  5. Fernández, Á.; Calvo, J.L.G.; Alonso, M.C.: Ordinary Portland cement composition for the optimization of the synergies of supplementary cementitious materials of ternary binders in hydration processes. Cem. Concr. Compos. 89, 238–250 (2018). https://doi.org/10.1016/j.cemconcomp.2017.12.016

    Article  Google Scholar 

  6. Erdem, T.K.; Kırca, Ö.: Use of binary and ternary blends in high strength concrete. Constr. Build. Mater. 22(7), 1477–1483 (2008)

    Article  Google Scholar 

  7. Wu, Z.; Naik, T.R.: Properties of concrete produced from multicomponent blended cements. Cem. Concr. Res. 32, 1937–1942 (2002)

    Article  Google Scholar 

  8. Bonavetti, V.; Irassar, E.F.: Strength optimization of b tailor-made cement Q with limestone filler and blast furnace slag. Cem. Concr. Res. 35, 1324–1331 (2005). https://doi.org/10.1016/j.cemconres.2004.09.023

    Article  Google Scholar 

  9. Lothenbach, B.; Scrivener, K.; Hooton, R.D.: Supplementary cementitious materials. Cem. Concr. Res. 41, 1244–1256 (2011)

    Article  Google Scholar 

  10. Chindaprasirt, P.: Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cem. Concr. Compos. 27, 425–428 (2005). https://doi.org/10.1016/j.cemconcomp.2004.07.003

    Article  Google Scholar 

  11. Kattoof, I.; Hassan, M.S.; Hasan, S.S.: Effects of liquid nitrogen cooling on the microstructure properties of nano-modified concrete under hot conditions. Arab. J. Sci. Eng. 47(10), 12569–12583 (2022). https://doi.org/10.1007/s13369-021-06496-5

    Article  Google Scholar 

  12. Materials C.E.: Properties of nano-modified concrete cast and cured under cyclic freezing/low temperatures. Adv. Civil Eng. Mater. (2019)

  13. Aswed, K.K.; Hassan, M.S.; Al-quraishi, H.: Optimisation and prediction of fresh ultra-high-performance concrete properties enhanced with nanosilica. J. Adv. Concr. Technol. 20(2), 103–116 (2022). https://doi.org/10.3151/jact.20.103

    Article  Google Scholar 

  14. Harith, I.K.; Hassan, M.S.; Hasan, S.S., et al.: Optimization of liquid nitrogen dosage to cool concrete made with hybrid blends of nanosilica and fly ash using response surface method. Innov. Infrastruct. Solut. 8, 138 (2023). https://doi.org/10.1007/s41062-023-01107-8

    Article  Google Scholar 

  15. Fallah, S.; Nematzadeh, M.: Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Constr. Build. Mater. 132, 170–187 (2017). https://doi.org/10.1016/j.conbuildmat.2016.11.100

    Article  Google Scholar 

  16. Men, G.; Bonavetti, V.; Irassar, E.F.: Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cem. Concr. Compos. 25, 61–67 (2003)

    Article  Google Scholar 

  17. Fernandez A.; Sa M.; Alonso M.C.; Garcı J.L.: Ternary mixes with high mineral additions contents and corrosion related properties dedicated to professor Dr. Bernhard Elsener on the occasion of his 60th birthday. 9999, 1–9 (2012). https://doi.org/10.1002/maco.201206654.

  18. De Weerdt, K.; Ben Haha, M.; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B.: Cement and concrete research hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 41(3), 279–291 (2011). https://doi.org/10.1016/j.cemconres.2010.11.014

    Article  Google Scholar 

  19. De Weerdt, K.; Kjellsen, K.O.; Sellevold, E.; Justnes, H.: Cement & concrete composites synergy between fly ash and limestone powder in ternary cements. Cem. Concr. Compos. 33(1), 30–38 (2011). https://doi.org/10.1016/j.cemconcomp.2010.09.006

    Article  Google Scholar 

  20. Radlinski, M.; Olek, J.: Cement & concrete composites investigation into the synergistic effects in ternary cementitious systems containing Portland cement, fly ash and silica fume. Cem. Concr. Compos. 34(4), 451–459 (2012). https://doi.org/10.1016/j.cemconcomp.2011.11.014

    Article  Google Scholar 

  21. Lenth, R.V.: Response-surface methods in R, using rsm. J. Stat. Softw. 32(7), 1–17 (2009)

    Article  Google Scholar 

  22. Montgomery, D.C.; Myers, R.H.; Carter, W.H., Jr.; Vining, G.G.: The hierarchy principle in designed industrial experiments. Qual. Reliab. Eng. Int. 21(2), 197–201 (2005)

    Article  Google Scholar 

  23. Ghafari, E.; Costa, H.; Júlio, E.: RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers. Constr. Build. Mater. 66, 375–383 (2014)

    Article  Google Scholar 

  24. Kumar, R.; Tiwari, O.P.: Experimental investigation of mechanical characterization and drilling of fabricated GFRP composites reinforced with Al2O3 micro particles. Int. J. Adv. Res. Ideas Innov. Technol. 4(4), 191–199 (2018)

    MathSciNet  Google Scholar 

  25. IQS-No.5/2019: Portland cement. Central organization for standardization and quality control (COSQC), Iraq. 1–10 (2019)

  26. ASTM C618-14: Standard specification for coal fly ash and raw 124 or calcined natural Pozzolan for use. Annual book Of ASTM standards American society for testing and materials. 1–5 (2014). https://doi.org/10.1520/C0618

  27. IQS No.45/1984: Aggregate from natural sources for concrete and building construction. Central organization for standardization and quality control (COSQC), Iraq. 1–16 (1984)

  28. ACI-304R: Guide for measuring, mixing, transporting, and placing concrete. (2000)

  29. Aswed, K.K.; Harith, I.K.: An eco-sustainable production of cement mortar containing waste glass as partial replacement of cement. 924, 201–211 (2022)

  30. Du, H., et al.: Waste glass powder as cement replacement in concrete concretes waste glass powder as cement replacement in concrete. J. Adv. Concr. Technol. 12, 468–477 (2014). https://doi.org/10.3151/jact.12.468

    Article  Google Scholar 

  31. ASTM C192-16: Standard practice for making and curing concrete test specimens in the laboratory. Annual book of ASTM standards American society for testing and materials. 04(01), 1–8 (2016)

  32. BS EN 12390-3: Testing hardened concrete-part 3: compressive of test specimens. 1–24 (2019)

  33. ASTM C1202-97: Electrical indication of concrete’s ability to resist chloride ion penetration. Annual book of ASTM standards. 4(2), 639–644 (1997)

  34. Montgomery, J.; Abu-lebdeh, T.M.; Hamoush, S.A.; Picornell, M.: Effect of nano silica on the compressive strength of harden cement paste at different stages of hydration. (March, 2016). https://doi.org/10.3844/ajeassp.2016.166.177

  35. Isfahani, F.T.; Redaelli, E.; Lollini, F.; Li, W.; Bertolini, L.: Effects of nanosilica on compressive strength and durability properties of concrete with different water to binder ratios. Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/2016/8453567

    Article  Google Scholar 

  36. Haruehansapong, S.; Pulngern, T.; Chucheepsakul, S.: Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2. Constr. Build. Mater. 50, 471–477 (2014)

    Article  Google Scholar 

  37. Said, A.M.; Zeidan, M.S.; Bassuoni, M.T.; Tian, Y.: Properties of concrete incorporating nano-silica. Constr. Build. Mater. 36, 838–844 (2012)

    Article  Google Scholar 

  38. Senff, L.; Labrincha, J.A.; Ferreira, V.M.; Hotza, D.; Repette, W.L.: Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr. Build. Mater. 23(7), 2487–2491 (2009)

    Article  Google Scholar 

  39. Florea, M.V.A.; Brouwers, H.J.H.: Chloride binding related to hydration products: part I: ordinary portland cement. Cem. Concr. Res. 42(2), 282–290 (2012)

    Article  Google Scholar 

  40. Qu, Z.Y.; Yu, Q.L.; Brouwers, H.J.H.: Relationship between the particle size and dosage of LDHs and concrete resistance against chloride ingress. Cem. Concr. Res. 105, 81–90 (2018)

    Article  Google Scholar 

  41. Mesbah, A., et al.: Crystal structure of Kuzel’s salt 3CaO·Al2O3·1/2CaSO4·1/2CaCl2·11H2O determined by synchrotron powder diffraction. Cem. Concr. Res. 41(5), 504–509 (2011)

    Article  Google Scholar 

  42. Mesbah, A.; Cau-dit-Coumes, C.; Renaudin, G.; Frizon, F.; Leroux, F.: Uptake of chloride and carbonate ions by calcium monosulfoaluminate hydrate. Cem. Concr. Res. 42(8), 1157–1165 (2012)

    Article  Google Scholar 

  43. Elakneswaran, Y.; Nawa, T.; Kurumisawa, K.: Electrokinetic potential of hydrated cement in relation to adsorption of chlorides. Cem. Concr. Res. 39(4), 340–344 (2009)

    Article  Google Scholar 

  44. Wang, G.M.; Kong, Y.; Shui, Z.H.; Li, Q.; Han, J.L.: Experimental investigation on chloride diffusion and binding in concrete containing Metakaolin. Corros. Eng. Sci. Technol. 49(4), 282–286 (2014)

    Article  Google Scholar 

  45. Shi, T.; Li, Z.; Guo, J.; Gong, H.; Gu, C.: Research progress on CNTs/CNFs-modified cement-based composites–a review. Constr. Build. Mater. 202, 290–307 (2019)

    Article  Google Scholar 

  46. Liu, X., et al.: Effects of colloidal nano-SiO2 on the immobilization of chloride ions in cement-fly ash system. Cem. Concr. Compos. 110, 103596 (2020). https://doi.org/10.1016/j.cemconcomp.2020.103596. (July 2019)

    Article  Google Scholar 

  47. ACI Committee 222: Protection of metals in concrete against corrosion. Aci 222R-01. 1–41 (2001)

  48. Cheewaket, T.; Jaturapitakkul, C.; Chalee, W.: Long term performance of chloride binding capacity in fly ash concrete in a marine environment. Constr. Build. Mater. 24(8), 1352–1357 (2010)

    Article  Google Scholar 

  49. Ipavec, A.; Vuk, T.; Gabrovšek, R.; Kaučič, V.: Chloride binding into hydrated blended cements: the influence of limestone and alkalinity. Cem. Concr. Res. 48, 74–85 (2013)

    Article  Google Scholar 

  50. Ma, B., et al.: Utilization of pretreated fly ash to enhance the chloride binding capacity of cement-based material. Constr. Build. Mater. 175, 726–734 (2018)

    Article  Google Scholar 

  51. Ma, B., et al.: Effect of TIPA on chloride immobilization in cement-fly ash paste. Adv. Mater. Sci. Eng. (2018). https://doi.org/10.1155/2018/4179421

    Article  Google Scholar 

  52. Wang, Y.; Liu, C.; Tan, Y.; Wang, Y.; Li, Q.: Chloride binding capacity of green concrete mixed with fly ash or coal gangue in the marine environment. Constr. Build. Mater. 242, 118006 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118006

    Article  Google Scholar 

  53. Han, H.; Yu, R.; Li, B.; Zhang, Y.; Wang, W.; Chen, X.: Multi-objective optimization of corrugated tube with loose-fit twisted tape using RSM and NSGA-II. Int. J. Heat Mass Transf. 131, 781–794 (2019)

    Article  Google Scholar 

  54. Aziminezhad, M.; Mahdikhani, M.; Memarpour, M.M.: RSM-based modeling and optimization of self-consolidating mortar to predict acceptable ranges of rheological properties. Constr. Build. Mater. 189, 1200–1213 (2018)

    Article  Google Scholar 

  55. Derringer, G.; Suich, R.: Simultaneous optimization of several response variables. J. Qual. Technol. 12(4), 214–219 (1980)

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Kattoof Harith.

Ethics declarations

Conflict of interest

The authors declare there are no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harith, I.K. Optimization of Quaternary Blended Cement for Eco-Sustainable Concrete Mixes Using Response Surface Methodology. Arab J Sci Eng 48, 14079–14094 (2023). https://doi.org/10.1007/s13369-023-08071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08071-6

Keywords

Navigation