Skip to main content

Advertisement

Log in

Investigating embodied carbon, mechanical properties, and durability of high-performance concrete using ternary and quaternary blends of metakaolin, nano-silica, and fly ash

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Research for alternative binders has become a necessity due to cement’s embodied carbon, climate change, and depletion of natural resources. These binders could potentially reduce our reliance on cement as the sole binder for concrete while simultaneously enhancing the functional characteristics of concrete. Theoretically, the use of finer particles in the cement matrix densifies the pore structure of concrete and results in improved properties. To validate this hypothesis, current research was designed to investigate how the value-added benefits of nano-silica (NS) and metakaolin (MK) in fly ash (FA)-blended cement affect the mechanical and durability characteristics of concrete when used as ternary and quaternary blends. Additionally, the cost–benefit analysis and environmental impact assessment were conducted. It was observed that the synergy of MK and NS used in FA-blended cement had a greater impact on enhancing the functional characteristics of concrete, while 10% MK as ordinary Portland cement (OPC) replacement and 1% NS as an additive in FA-blended OPC concrete was the optimum combination which achieved 94-MPa compressive strength at the age of 91 days and showed more than 25% increment in the flexural and splitting tensile strengths compared to the control mix (MS00). The ultrasonic pulse velocity and dynamic modulus of elasticity were significantly improved, while a significant reduction in chloride migration of 50% was observed. In terms of environmental impact, MS100 (30% FA and 10% MK) exhibited the least embodied CO2 emissions of 319.89 kgCO2/m3, while the highest eco-strength efficiency of 0.268 MPa/kgCO2·m−3 with respect to 28-day compressive strength was exhibited by MS101. In terms of cost–benefit, MS00 was determined the cheapest, while the addition of MK and NS increased the cost. The lowest cost of producing 1 MPa was exhibited by MS01 with a merely 0.04-$/MPa/m3 reduction compared to MS00.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

Download references

Acknowledgements

The authors would like to thank Universiti Teknologi PETRONAS for providing financial aid and lab facilities to perform this research.

Author information

Authors and Affiliations

Authors

Contributions

Rabinder Kumar: experimental design, methodology, investigation, data analysis, writing—original draft, and writing—review and editing. Nasir Shafiq: conceptualization, supervision, funding acquisition, and writing—review and editing. Aneel Kumar: review and editing, and data analysis. Ashfaque Ahmed Jhatial: data analysis, and writing—review and editing.

Corresponding author

Correspondence to Rabinder Kumar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Shafiq, N., Kumar, A. et al. Investigating embodied carbon, mechanical properties, and durability of high-performance concrete using ternary and quaternary blends of metakaolin, nano-silica, and fly ash. Environ Sci Pollut Res 28, 49074–49088 (2021). https://doi.org/10.1007/s11356-021-13918-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13918-2

Keywords

Navigation