Skip to main content

Advertisement

Log in

Y-Shaped Plasmonic Waveguide Splitter Coupled with Nano-Antenna for Optical Wireless Communication

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nanophotonic circuit is an emerging technology to achieve ultra-high speed communication systems. One of the key elements in the design of nanophotonic circuits is the coupling of optical energy from the optical source and guiding it into the various optical components at the nanoscale. The nano couplers used for this purpose have several limitations at plasmonic frequencies. The use of nano-antennas, which are capable of confining, enhancing, and coupling optical energy efficiently, could be an alternative to nano-couplers in nanophotonic circuits. In this view, the nano-antenna coupled Y-shaped plasmonic waveguide splitter using bowtie, hexagon, and square-shaped nano-antennas on a silicon dioxide substrate for optical wireless communication is investigated. The manuscript illustrates, the application of nano-antennas in plasmonic integrated circuits to couple the optical power from a source into the Y-shaped plasmonic waveguide splitter is illustrated. Initially, three nano-antennas, such as bowtie, hexagon, and square-shaped nanostructures are designed using silver on a silicon dioxide substrate and plasmonic resonance characteristics are analyzed in detail. It is observed that bowtie, hexagon, and square shaped nano-antennas exhibit minimum reflections of − 38.152 dB at 108.97 THz, − 39.098 dB at 174.5 THz and − 47.306 dB at 147 THz respectively. The coupling capacity of the nano-antenna is measured by comparing the power coupled into the ports of the Y-shaped plasmonic waveguide splitter with and without the use of the nano-antenna. Further, it is observed that the Y-shaped plasmonic waveguide splitter exhibits a maximum of 60, 70 and 75 dB enhancement in the coupling power into ports when coupled with bowtie, hexagon and square shaped nano-antennas respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gao, Q.; Liverman, S.; Wang, A.X.: Design and characterization of high efficiency nanoantenna couplers with plasmonic integrated circuit. J. Lightw. Technol. 35(15), 3182–3188 (2017)

    Article  Google Scholar 

  2. Huang, K.; Seo, M.K.; Sarmiento, T., et al.: Electrically driven subwavelength optical nanocircuits. Nat. Photon 8, 244–249 (2014)

    Article  Google Scholar 

  3. Zia, R.; Schuller, J.A.; Chandran, A.; Brongersma, M.L.: Plasmonics: the next chip-scale technology. Mater. Today 9(7–8), 20–27 (2006)

    Article  Google Scholar 

  4. Fang, Y.; Sun, M.: Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Nat. Light Sci. Appl. 4(6), e294 (2015)

    Article  Google Scholar 

  5. Gao, Q.; Ren, F.; Wang, A.X.: Direct and efficient optical coupling into plasmonic integrated circuits from optical fibers. IEEE Photonics Technol. Lett. 28(11), 1165–1168 (2016)

    Article  Google Scholar 

  6. Blanquer, G.; Loo, V.; Rahbany, N.; Couteau, C.; Blaize, S.; Salas-Montiel, R.; De Wilde, Y.; Krachmalnicoff, V.: Waveguide efficient directional coupling and decoupling via an integrated plasmonic nanoantenna. Opt. Express 29, 29034–29043 (2021)

    Article  Google Scholar 

  7. Schuller, J.; Barnard, E.; Cai, W., et al.: Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010)

    Article  Google Scholar 

  8. Solís, D.M.; Taboada, J.M.; Obelleiro, F.; Landesa, L.: Optimization of an optical wireless nanolink using directive nanoantennas. Opt. Express 21, 2369–2377 (2013)

    Article  Google Scholar 

  9. Andryieuski, A.; Zenin, V.A.; Malureanu, R.; Volkov, V.S.; Bozhevolny, S.I.; Lavrinenko, A.V.: Direct characterization of plasmonic slot waveguides and nanocouplers. Nano Lett. 14(7), 3925–3929 (2014)

    Article  Google Scholar 

  10. Arigong, B.; Ding, J.; Ren, H.; Zhou, R.; Kim, H.; Lin, Y.; Zhang, H.: Design of wide-angle broadband Luneburg lens based optical couplers for plasmonic slot nano-waveguides. J. Appl. Phys. 114, 144301 (2013)

    Article  Google Scholar 

  11. Obelleiro, F.; Taboada, J.M.; Solís, D.M.; Bote, L.: Directive antenna nanocoupler to plasmonic gap waveguides. Opt. Lett. 38, 1630–1632 (2013)

    Article  Google Scholar 

  12. Ropers, C.; Neacsu, C.C.; Elsaesser, T.; Albrecht, M.; Raschke, M.B.; Lienau, C.: Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett. 7(9), 2784–2788 (2007)

    Article  Google Scholar 

  13. Delacour, C.; Blaize, S.; Grosse, P.; Fedeli, J.M.; Bruyant, A.; Montiel, R.S.; Lerondel, G.; Chelnokov, A.: Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal−oxide−silicon nanophotonics. Nano Lett. 10(8), 2922–2926 (2010)

    Article  Google Scholar 

  14. Gabrielli, L.H.; Lipson, M.: Integrated Luneburg lens via ultra-strong index gradient on silicon. Opt. Express 19, 20122–20127 (2011)

    Article  Google Scholar 

  15. Guo, R.; Decker, M.; Staude, I.; Neshev, D.N.; Kivshar, Y.S.: Bidirectional waveguide coupling with plasmonic Fano nanoantennas. Appl. Phys. Lett. 105, 053114 (2014)

    Article  Google Scholar 

  16. Andryieuski, A.; Malureanu, R.; Biagi, G.; Holmgaard, T.; Lavrinenko, A.: Compact dipole nanoantenna coupler to plasmonic slot waveguide. Opt. Lett. 37, 1124–1126 (2012)

    Article  Google Scholar 

  17. Alù, A.; Engheta, N.: Wireless at the nanoscale: optical interconnects using matched nanoantennas. Phys. Rev. Lett. 104(21), 213902 (2010)

    Article  Google Scholar 

  18. Arango, F.B.; Kwadrin, A.; Koenderink, A.F.: Plasmonic antennas hybridized with dielectric waveguides. ACS Nano 6(11), 10156–10167 (2012)

    Article  Google Scholar 

  19. Huang, J.; Feichtner, T.; Biagioni, P.; Hecht, B.: Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett. 9(5), 1897–1902 (2009)

    Article  Google Scholar 

  20. Wen, J.; Romanov, S.; Peschel, U.: Excitation of plasmonic gap waveguides by nanoantennas. Opt. Express 17, 5925–5932 (2009)

    Article  Google Scholar 

  21. Fang, Z.; Lu, Y.; Fan, L., et al.: Surface plasmon polariton enhancement in silver nanowire-nanoantenna structure. Plasmonics 5, 57–62 (2010)

    Article  Google Scholar 

  22. Klemm, M.: Novel directional nanoantennas for single-emitter sources and wireless nano-links. Int. J. Opt. 2012, 348306 (2012)

    Article  Google Scholar 

  23. Mironov, E.G.; Khaleque, A.; Liu, L.; Maksymov, I.S.; Hattori, H.T.: Enhancing weak optical signals using a plasmonic Yagi—Uda nanoantenna array. IEEE Photonics Technol. Lett. 26(22), 2236–2239 (2014)

    Article  Google Scholar 

  24. Yang, Y.; Li, Q.; Qiu, M.: Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas. Sci. Rep. 6, 19490 (2016)

    Article  Google Scholar 

  25. Kim, J., et al.: Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide. Sci. Rep. 5, 11832 (2015)

    Article  Google Scholar 

  26. Meng, Y.; Hu, F.; Shen, Y., et al.: Ultracompact graphene-assisted tunable waveguide couplers with high directivity and mode selectivity. Sci. Rep. 8, 13362 (2018)

    Article  Google Scholar 

  27. Vyas, H.; Hegde, R.: Nanostructuring improves the coupling of dielectric waveguides with plasmonic nanoresonators. OSA Contin. 3, 3094–3106 (2020)

    Article  Google Scholar 

  28. Kavitha, S.; Sairam, K.V.S.S.S.S.; Singh, A.: Graphene plasmonic nano-antenna for terahertz communication. SN Appl. Sci. 4, 114 (2022)

    Article  Google Scholar 

  29. Kavitha, S.; Sairam, K.V.; Singh, A.: Investigation of plasmonic metal conductors and dielectric substrates on nano-antenna for optical wireless communication. Progr. Electromagnet. Res. B 95, 1–22 (2022)

    Article  Google Scholar 

  30. Jassim, D.A.; Elwi, T.A.: Optical nano monopoles for interconnection electronic chips applications. Optik 249, 168142 (2022)

    Article  Google Scholar 

  31. Elwi, T.A.; Alnaiemy, Y.: Nano-scale vee Yagi-UDA antenna based nano shell-silver coated silica for tunable solid—state laser applications. DJES 12(1), 1–6 (2019)

    Article  Google Scholar 

  32. Elwi, T.; Al-Rizzo, H.: Electromagnetic wave interactions with 2D arrays of single-wall carbon nanotubes. J. Nanomat. 2011, 709263 (2011). https://doi.org/10.1155/2011/709263

    Article  Google Scholar 

  33. Elwi, T.A.; Al-Rizzo, H.M.: fresnel lenses based on nano shell-silver coated silica array for solar cells applications. Progr. Electromagnet. Res. B 32, 263–282 (2011)

    Article  Google Scholar 

  34. Elwi, T.A.: A novel approach for modeling the geometry and constitutive parameters of an armchair single-wall carbon nanotube antenna operating in the NIR regime. J. Al-Ma’moon Coll. 24, 261–285 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kavitha.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, S., Sairam, K.V.S.S.S.S. & Singh, A. Y-Shaped Plasmonic Waveguide Splitter Coupled with Nano-Antenna for Optical Wireless Communication. Arab J Sci Eng 48, 15015–15027 (2023). https://doi.org/10.1007/s13369-023-08005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08005-2

Keywords

Navigation