Skip to main content
Log in

One-way light transmission in compact SOI structures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Nonreciprocal transmission of the light is fundamental in all-optical processing systems and, it is in a great demand in advanced optical communication networks. Optical devices based on one-way light transport are essential to prevent interference between various integrated components of the optical networks. The integration of these devices in a single platform is a challenging task due to material incompatibilities between the integrated devices. We report all-silicon-on-insulator waveguides where the asymmetric light propagation is obtained. These waveguides are coupled using micro rings with modified gaps. We show that unidirectional optical transmission of the light can be accomplished by non-symmetric distribution of micro rings and gaps between the waveguides. We also show the time domain snapshot of the light propagation from left to right and from right to left behaves differently. The advantageous properties of the proposed structure are the compatibility with the integrated photonics and can serve as a main building block for designing integrated silicon nanophotonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Absil, P.P., Verheyen, P., De Heyn, P., Pantouvaki, M., Lepage, G.: Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s. Opt. Express 23, 9369–9378 (2015)

    Article  ADS  Google Scholar 

  • Aplet, L.J., Carson, J.W.: A Faraday effect optical isolator. Appl. Opt. 3, 245–255 (1964)

    Article  Google Scholar 

  • Aroua, W., Gamra, D., AbdelMalek, F., Bouchriha, H.: Finite-difference time Domain method for design of microcavity-coupled submicron-width waveguides. Eur. Phys. J. AP. 17, 215–221 (2002)

    Article  ADS  Google Scholar 

  • Asano, T., Song, B.S., Tanaka, Y., Noda, S.: Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slab. Appl. Phys. Lett. 83, 407–409 (2003)

    Article  ADS  Google Scholar 

  • Assefa, S., Shank, S.M., Vlasov, Y.A., Offrein, B.J.: Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-) multiplexing. Opt. Express 21, 11652–11658 (2013)

    Article  ADS  Google Scholar 

  • Assefa, S., Shank, S.M., Vlasov, Y.A., Offrein, B.J.: Highly efficient mode converter for coupling light into wide slot photonic crystal waveguide. Opt. Express 22, 20678–20690 (2014)

    Article  Google Scholar 

  • Barwicz, T., et al.: Microring-resonator-based add-drop filters in SiN:fabrication and analysis. Opt. Express 12, 1437–1442 (2004)

    Article  ADS  Google Scholar 

  • Berenger, C.J.P.A.: Perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bonneau, D., Engin, E., Ohira, K., Suzuki, N., Yoshida, H., Iizuka, N., Ezaki, M., Natarajan, C.M., Tanner, M.G.: Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New J. Phys. 14, 045003 (2012)

    Article  ADS  Google Scholar 

  • Chen, C.T., Xu, X., Hosseini, A., Pan, Z., Subbaraman, H., Zhang, X., Chen, R.T.: Design of highly efficient hybrid si-au taper for dielectric strip waveguide to plasmonic slot waveguide mode converter. J. Lightwave Technol. 33, 535–540 (2015)

    Article  ADS  Google Scholar 

  • Fujita, J., Levy, M., Osgood, R.M., Wilkens, L., Dotsch, H.: Waveguide optical isolator based on Mach–Zehnder interferometer. Appl. Phys. Lett. 76, 2158–2160 (2000)

    Article  ADS  Google Scholar 

  • Khan, M.H., et al.: Ultaboroad-bandwith arbitrary waveform processingof more than 100 spectral combines. Nat. Photonics 4, 117–122 (2010)

    Article  ADS  Google Scholar 

  • Kurt, H., Yilmaz, A.E., Akosman, A.E., Ozbay, E.: Asymmetric light propagation in chirped photonic crystal waveguides. Opt. Express 20(18), 20635–20646 (2012)

    Article  ADS  Google Scholar 

  • Kwong, D., Hosseini, A., Covey, J., Zhang, Y., Xu, X., Subbaraman, H., Chen, R.T.: On-chip silicon optical phased array for two-dimensional beam steering. Opt. Lett. 39, 941–944 (2014)

    Article  ADS  Google Scholar 

  • Laurent, V., Polzer, A., Marris-Morini, D., Osmond, J., Hartmann, J.M., Crozat, P., Cassan, E., Kopp, Ch., Zimmermann, H., Fédéli, J.M.: Zero-bias 40Gbit/s germanium waveguide photodetector on silicon. Opt. Express 20(2), 1096–1101 (2012)

    Article  ADS  Google Scholar 

  • Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., Laine, J.-P.: Title. J. Lightwave Technol. 15, 998–1005 (1997)

    Article  ADS  Google Scholar 

  • Manipatruni, S., Robinson, J.T., Lipson, M.: Optical nonreciprocity in optomechanical structures. Phys. Rev. Lett. 102, 213903–213907 (2009)

    Article  ADS  Google Scholar 

  • Sato, T., Sun, J., Kasahara, R., Kawakami, S.: Lens-free in-line optical isolators. Opt. Lett. 24, 1337–1339 (1999)

    Article  ADS  Google Scholar 

  • Shirasaki, M., Asama, K.: Compact optical isolator for fibers using birefringent wedges. Appl. Opt. 21, 4296–4299 (1982)

    Article  ADS  Google Scholar 

  • Soljacic, M., Luo, C., Joannopoulos, J.D., Fan, S.: Nonlinear photonic crystal microdevices for optical integration. Opt. Lett. 28, 637–639 (2003)

    Article  ADS  Google Scholar 

  • Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E.S., Watts, M.R.: Large-scale nanophotonic phased array. Nature 493, 195–199 (2013)

    Article  ADS  Google Scholar 

  • Taillaert, D., Chong, H., Borel, P., Frandsen, L., De La Rue, M., Baets, R., Subbaraman, H., Xu, X.: Recent advances in silicon-based passive and active optical interconnects. Opt. Express 23, 2487–2511 (2015)

    Article  Google Scholar 

  • Xiao, S., Khan, M.H., Shen, H., Qi, M.: Compact silicon microring resonators with ultra-low propagation loss in the C band. Opt. Express 15, 14467–14475 (2007)

    Article  ADS  Google Scholar 

  • Xiao, S., Shen, H., Khan, M.H., Qi, M.: Conference lasers and electro-optics CTu GG6 (2008)

  • Yu, Z., Fan, S.: Complete optical isolation created by indirect interband photonic transitions. Nat Photon 3, 91–94 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, X., Hosseini, A., Chakravarty, S., Luo, J., Jen, A.: Polymer-based hybrid integrated photonic devices for silicon on-chip modulation and board-level optical interconnects. IEEE Sel. Top. Quantum Electron. 19, 196–210 (2013)

    Article  Google Scholar 

  • Zhang, X., Hosseini, A., Luo, J., Jen, A., Chen, R.T.: Hybrid silicon-electro-optic-polymer integrated high-performance optical modulator. In: Proceedings of SPIE 8991, optical interconnects XIV, 8991001-6 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. AbdelMalek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdouni, H., AbdelMalek, F. One-way light transmission in compact SOI structures. Opt Quant Electron 48, 95 (2016). https://doi.org/10.1007/s11082-015-0299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-015-0299-7

Keywords

Navigation