Skip to main content

Advertisement

Log in

Solar-HVAC Thermal Investigation Utilizing (Cu-AA7075/C6H9NaO7) MHD-Driven Hybrid Nanofluid Rotating Flow via Second-Order Convergent Technique: A Novel Engineering Study

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In solar heating, ventilation, and air-conditioning (S-HVAC), communications are designed to create new 3D mathematical models that address the flow of Sutterby hybridization nanofluids rotating in front of slippery and expandable seats. The heat transfer investigation included effects such as copper (Cu) and aluminum alloys (AA7075) nanoparticles as well as thermal radiation. The activation energy and magneto effects were used to investigate mass transfer with fluid concentration. The limiting terms used were Maxwell’s speed and Smoluchowksi’s temperature slippage. With the use of fitting changes, numerically expressed partial differential equations (PDEs) strength, energy, and fixation can be reduced to ordinary differential equations (ODEs). To solve ODEs without dimensions, MATLAB’s Keller box numerical technique was used. Copper–aluminum alloys/sodium alginate (Cu-AA7075/C6H9NaO7) is intended to address the performance analysis of the present study. Physical attributes, for example, surface drag coefficients, heat moves, and mass exchanges are mathematically processed and displayed as tables and figures when a variety of different factors differ. The field of temperature is increased by increasing the volume fraction of copper and graphene oxide nanoparticles, while the mass fraction field is increased by increasing the activation energy. When thermal radiative flowing upsurges by 55%, the heat transfer rate is boosted by 98% while the mass transfer rate is boosted by 86%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The results of this study are available only within the paper to support the data.

Abbreviations

\(T_{\infty }\) :

Ambient temperature (K)

\(R_{\Omega }\) :

Reynolds number

C :

Concentricity

\(C_{\infty }\) :

Ambient concentration (mol m−3)

I :

Identifying tensor

\(R_{\gamma }\) :

Thermal radiation

\(u_{w}\) :

Stretching sheet rapidity (ms−1)

Pr:

Prandtl number

Y :

Reaction rate constant (mol lit−1 s−1)

\(\sigma_{v}\) :

Speed accommodation factor

\(\varpi_{2}\) :

Heat slippery (K)

n :

Fixed ratio

T w :

Surface temperature (K)

ϕ :

Volume fraction of the nanoparticles

Ω:

Independent similarity variable

μ:

Dynamic viscosity of the fluid (kgm−1 s−1)

μ0 :

Zero shear viscid

α :

Thermal diffusivity (m2 s−1)

M :

Magnetic field parameter

u w :

Stretching sheet rapidity (m)

m :

Power-index

\(\dot{\gamma }\) :

Second invariant strain tensor

\(H_{\Omega }\) :

Deborah’s amount

Δ:

Rotational factor

p :

Pressure

Q :

Consistency parameter

\(\varpi_{1}\) :

Speed slippery (ms−1)

q r :

Radiative heat flux (Wm−2)

P :

Activation energy (Jmol−1)

\(\sigma_{T}\) :

Temperature accommodation coefficient

\(S_{\alpha }\) :

Schmidt amount

\(\varpi\) :

Temperature difference

\(C_{w}\) :

Surface concentricity (mol m−3)

\(\rho\) :

Density (kgm−3)

\(\theta \) :

Dimensionless temperature

\(\nu\) :

Kinematic viscosity of the fluid (m2 s−1)

\(x,y,z\) :

Spaces coordinates (m)

\(\sigma^{*} \) :

Stefan–Boltzmann constant

\(k^{*}\) :

Absorption coefficient

\(S\) :

Strain tensor

\(\xi\) :

Rotating

\(f, gf\) :

Base fluid

\(nf\) :

Nanofluid

\(hnf\) :

Hybrid nanofluid

\(p,p_{1} ,p_{2}\) :

Nanoparticles

\(s\) :

Particles

\(w\) :

Wall restriction

\(\infty\) :

Freestream restriction

S-HVAC:

Solar heating, ventilation, and air-conditioning

3D:

Three dimensions

Cu:

Copper

AA7075:

Aluminum alloys

SA (C6H9NaO7):

Sodium alginate

PDE:

Partial differential equations

ODEs:

Ordinary differential equations

MHD:

Magnetohydrodynamics

PV:

Photovoltaic

SEVCR:

Solar electric/steam compression cooling

CNTs:

Carbon nanotubes

ECU:

Extensive care unit

BCs:

Boundary constraints

References

  1. Belhocine, A.; Abdullah, O.I.: Numerical simulation of thermally developing turbulent flow through a cylindrical tube. Int. J. Adv. Manuf. Technol. 102(5), 2001–2012 (2019)

    Google Scholar 

  2. Afzal, A.; Soudagar, M.E.M.; Belhocine, A.; Kareemullah, M.; Hossain, N.; Alshahrani, S.; Saleel, C.; Subbiah, R.; Qureshi, F.; Mujtaba, M.: Thermal performance of compression ignition engine using high content biodiesels: a comparative study with diesel fuel. Sustainability 13(14), 7688 (2021)

    Google Scholar 

  3. Kannan, N.; Vakeesan, D.: Solar energy of the coming world: review. Renew. Sustain. Energy Review. 62, 1092–1105 (2016)

    Google Scholar 

  4. Penga, Ž; Nižetić, S.; Arıcı, M.: Solar plant with short diffuser concept: Further improvement of numerical model by included influence of guide vane topology on shape and stability of gravitational vortex. J. Clean. Prod. 212, 353–361 (2019)

    Google Scholar 

  5. Nazir, M.S.; Shahsavar, A.; Afrand, M.; Arıcı, M.; Nižetić, S.; Ma, Z.; Öztop, H.F.: A comprehensive review of parabolic trough solar collectors equipped with turbulators and numerical evaluation of hydrothermal performance of a novel model. Sustain. Energy Tech. Assess. 45, 101103 (2021)

    Google Scholar 

  6. Al-Yasiri, Q.; Szabó, M.; Arıcı, M.: A review on solar-powered cooling and air-conditioning systems for building applications. Energy Rep. 8, 2888–2907 (2022)

    Google Scholar 

  7. Fu, R.; Feldman, D.J.; Margolis, R.M.: US solar photovoltaic system cost benchmark: Q1 2018 (No. NREL/TP-6A20-72399). National Renewable Energy Lab. (NREL), Golden, CO (United States) (2018)

  8. International Energy Agency. Archived from the original (PDF) on 13 January (2012).

  9. Zarza, E.; Rojas, M.E.; Gonzalez, L.; Caballero, J.M.; Rueda, F.: INDITEP: DSG’s first pre-commercial solar power plant. Solar Power 80(10), 1270–1276 (2006)

    Google Scholar 

  10. Chan, H.Y.; Riffat, S.B.; Zhu, J.: A review of solar thermal and cooling technology. Renew. Sustain. Energy Rev. 14(2), 781–789 (2010)

    Google Scholar 

  11. Schulze, T.F.; Schmidt, T.W.: Photochemical transformation: the current state and prospects for its use in converting solar energy. Energy Natural Sci. 8(1), 103–125 (2015)

    Google Scholar 

  12. Bahnemann, D.: Photocatalytic water treatment: solar energy applications. Sol. Energy 77(5), 445–459 (2004)

    Google Scholar 

  13. Meinel, A.B.; Meinel, M.P.: Applied solar energy: an introduction. NASA STI/Recon Tech. Rep. A 77, 33445 (1977)

    Google Scholar 

  14. Ohunakin, O.S.; Adaramola, M.S.; Oyewola, O.M.; Fagbenle, R.O.: Solar energy applications and development in Nigeria: drivers and barriers. Renew. Sustain. Energy Rev. 32, 294–301 (2014)

    Google Scholar 

  15. Reddy, R.G.: Molten salts: thermal energy storage and heat transfer media (2011)

  16. Bartley, J.M.; Olmsted, R.N.; Haas, J.: Current views of health care design and construction: practical implications for safer, cleaner environments. Am. J. Infect. Cont. 38(5), S1–S12 (2010)

    Google Scholar 

  17. R McDowall (2006) Fundamentals of HVAC systems. In: R McDowall (ed.) Atlanta, Elsevier Ltd, 1st edn

  18. Luongo, J.C.; Fennelly, K.P.; Keen, J.A.; Zhai, Z.J.; Jones, B.W.; Miller, S.L.: Role of mechanical ventilation in the airborne transmission of infectious agents in buildings. Indoor Air 26(5), 666–678 (2016)

    Google Scholar 

  19. Curtis, L.T.: Prevention of hospital-acquired infections: review of non-pharmacological interventions. J. Hospital Infect. 69(3), 204–219 (2008)

    Google Scholar 

  20. https://www.greenrevolutionltd.com/solar-thermal-hvac/

  21. Enteria, N.; Mizutani, K.: The role of the thermally activated desiccant cooling technologies in the issue of energy and environment. Renew. Sustain. Energy Rev. 15(4), 2095–2122 (2011)

    Google Scholar 

  22. Qi, R.; Lu, L.; Yang, H.: Investigation on air-conditioning load profile and energy consumption of desiccant cooling system for commercial buildings in Hong Kong. Energy Build. 49, 509–518 (2012)

    Google Scholar 

  23. Pérez-Lombard, L.; Ortiz, J.; Pout, C.: A review on buildings energy consumption information. Energy Build. 40(3), 394–398 (2008)

    Google Scholar 

  24. Yao, Y.; Chen, J.: Global optimization of a central air-conditioning system using decomposition–coordination method. Energy Build. 42(5), 570–583 (2010)

    Google Scholar 

  25. Balaras, C.A.; Grossman, G.; Henning, H.M.; Ferreira, C.A.I.; Podesser, E.; Wang, L.; Wiemken, E.: Solar air conditioning in Europe—an overview. Renew. Sustain. Energy Rev. 11(2), 299–314 (2007)

    Google Scholar 

  26. Al-Waked, R.; Nasif, M.S.; Groenhout, N.; Partridge, L.: Energy performance and CO2 emissions of HVAC systems in commercial buildings. Buildings 7(4), 84 (2017)

    Google Scholar 

  27. CO_GEN, N.G.B.: Bureau of energy efficiency (2007). https://beeindia.gov.in/

  28. Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.: Comparative study of different solar cooling systems for buildings in subtropical city. Sol. Energy 84(2), 227–244 (2010)

    Google Scholar 

  29. El-Dessouky, H.; Ettouney, H.; Al-Zeefari, A.: Performance analysis of two-stage evaporative coolers. Chem. Eng. J. 102(3), 255–266 (2004)

    Google Scholar 

  30. Al-Yasiri, Q.; Szabó, M.; Arıcı, M.: Single and hybrid nanofluids to enhance performance of flat plate solar collectors: application and obstacles. Period. Polytech. Mech. Eng. 65(1), 86–102 (2021)

    Google Scholar 

  31. Li, H.; Ha, C.S.; Kim, I.: Fabrication of carbon nanotube/SiO2 and carbon nanotube/SiO2/Ag nanoparticles hybrids by using plasma treatment. Nanoscale Res. Lett. 4, 1384–1388 (2009)

    Google Scholar 

  32. Yıldız, Ç.; Arıcı, M.; Karabay, H.: Comparison of a theoretical and experimental thermal conductivity model on the heat transfer performance of Al2O3-SiO2/water hybrid-nanofluid. Int. J. Heat Mass Transf. 140, 598–605 (2019)

    Google Scholar 

  33. Makisima, A.: Possibility of hybrids materials. Ceram. Japan. 39, 90–91 (2004)

    Google Scholar 

  34. Hayat, T.; Nadeem, S.: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys. 7, 2317–2324 (2017)

    Google Scholar 

  35. Selimefendigil, F.; Öztop, H.F.: Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders. Int. J. Heat Mass Transf. 117, 331–343 (2018)

    Google Scholar 

  36. Nabil, M.F.; Azmi, W.H.; Hamid, K.A.; Zawawi, N.N.M.; Priyandoko, G.; Mamat, R.: Thermo-physical properties of hybrid nanofluids and hybrid nanolubricants: a comprehensive review on performance. Int. Commun. Heat Mass Transf. 83, 30–39 (2017)

    Google Scholar 

  37. Minea, A.A.; El-Maghlany, W.M.: Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison. Renew. Energy 120, 350–364 (2018)

    Google Scholar 

  38. Akram, J.; Akbar, N.S.; Tripathi, D.: Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: a Sutterby fluid model. Microvascular Res. 132, 104062 (2020)

    Google Scholar 

  39. Hayat, T.; Ahmad, S.; Khan, M.I.; Alsaedi, A.: Modeling chemically reactive flow of sutterby nanofluid by a rotating disk in presence of heat generation/absorption. Commun. Theoret. Phys. 69(5), 569 (2018)

    MathSciNet  Google Scholar 

  40. Khan, W.A.; Ali, M.; Waqas, M.; Shahzad, M.; Sultan, F.; Irfan, M.: Importance of convective heat transfer in flow of non-Newtonian nanofluid featuring Brownian and thermophoretic diffusions. Int. J. Numer. Meth. Heat Fluid Flow 29, 4624–4641 (2019)

    Google Scholar 

  41. Crochet, M.J.; Walters, K.: Numerical methods in non-Newtonian fluid mechanics. Annual Rev. Fluid Mech. 15, 241–260 (1983)

    MATH  Google Scholar 

  42. Kang, K.S.; Keyes, D.E.: Streamfunction finite element method for Magnetohydrodynamics. In: Parallel Computational Fluid Dynamics. Elsevier Science BV, pp. 67–74 (2006)

  43. Wang, Q.; Wei, W.; Li, D.; Qi, H.; Wang, F.; Arıcı, M.: Experimental investigation of thermal radiative properties of Al2O3-paraffin nanofluid. Sol. Energy 177, 420–426 (2019)

    Google Scholar 

  44. Chamkha, A.J.; Jena, S.K.; Mahapatra, S.K.: MHD convection of nanofluids: a review. J. Nanofluids 4(3), 271–292 (2015)

    Google Scholar 

  45. van Wiechen, P.: Hydraulic Engineering & Environmental Fluid Mechanics, MSc., Delft University of Technology (2019)

  46. Abbatiello, A.; Bulíček, M.; Maringová, E.: On the dynamic slip boundary condition for Navier–Stokes-like problems. Math. Models Meth. Appl. Sci. 31(11), 2165–2212 (2021)

    MathSciNet  MATH  Google Scholar 

  47. Maxwell, J.C.: On stresses in rarefied gases arising from inequalities of temperature. Proc. R. Soc. Lond. 27, 304–308 (1878)

    MATH  Google Scholar 

  48. Smoluchowski, M.V.: Ueber Wärmeleitung in verdünnten Gasen. Ann. Phys. 300(1), 101–130 (1898)

    MATH  Google Scholar 

  49. Sajid, T.; Jamshed, W.; Shahzad, F.; Akgul, E.K.; Nisa, K.S.; Eid, M.R.: Impact of gold nanoparticles along with Maxwell velocity and Smoluchowski temperature slip boundary conditions on fluid flow: Sutterby model. Chin. J. Phys. 77, 1387–1404 (2022)

    MathSciNet  Google Scholar 

  50. Brewster, M.Q.: Thermal radiative transfer and features. Wiley, London (1992)

    Google Scholar 

  51. Jamshed, W.: Thermal augmentation in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar energy application. Energy Environ. (2021). https://doi.org/10.1177/0958305X211036671

    Article  Google Scholar 

  52. Hussain, S.M.; Jamshed, W.: A comparative entropy based analysis of tangent hyperbolic hybrid nanofluid flow: Implementing finite difference method. Int. Commun. Heat Mass Transf. 129, 105671 (2021)

    Google Scholar 

  53. Jamshed, W.; Prakash, M.; Devi, S.S.U.; Ibrahim, R.W.; Shahzad, F.; Nisar, K.S.; Eid, M.R.; Abdel-Aty, A.H.; Khashan, M.M.; Yahia, I.S.: A brief comparative examination of tangent hyperbolic hybrid nanofuid through a extending surface: numerical Keller-Box scheme. Sci. Rep. 11, 24032 (2021)

    Google Scholar 

  54. Elgazery, N.S.: Flow of non-Newtonian magneto fluid with gold and alumina nanoparticles through a non-Darcian porous medium. J. Egypt. Math. Soc. 27, 39 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Jamshed, W.; Eid, M.R.; Mohd, N.N.A.A.; Nisar, K.S.; Aziz, A.; Shahzad, F.; Saleel, C.A.; Shukla, A.: Thermal examination of renewable solar energy in parabolic trough solar collector utilizing Maxwell nanofluid: a noble case study. Case Stud. Therm. Eng. 27, 101258 (2021)

    Google Scholar 

  56. Ullah Khan, S.I.; Khan, U.; Ahmed, N.; Mohyud-Din, S.T.; Khan, I.; Nisar, K.S.: Thermal transport investigation in AA7072 and AA7075 aluminum alloys nanomaterials based radiative nanofluids by considering the multiple physical flow conditions. Sci. Rep. 11(1), 9837 (2021)

    Google Scholar 

  57. Shahzad, F.; Jamshed, W.; Nisar, K.S.; Mohd, N.N.A.A.; Safdar, R.; Abdel-Aty, A.-H.; Yahia, I.S.: Thermal analysis for Al2O3–sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium. Sci. Rep. 12, 3287 (2022)

    Google Scholar 

  58. Bilal, S.; Sohail, M.; Naz, R.; Malik, M.Y.; Alghamdi, M.: Upshot of Ohmically dissipated Darcy-Forchheimer slip ow of magnetohydrodynamic Sutterby fluid over radiating linearly stretched surface in view of Cash and Carp method. Appl. Math. Mech. Engl. 40, 861–876 (2019)

    MATH  Google Scholar 

  59. Keller, H.B.: A New difference scheme for Parabolic problems. In: Hubbard, B. (Ed.) Numerical solutions of partial differential equations, pp. 327–350. Academic Press, New York (1971)

    Google Scholar 

  60. Zaimi, K.; Ishak, A.; Pop, I.: Stretching surface in rotating viscoelastic fluid. Appl. Math. Mech. 34, 945–952 (2013)

    MathSciNet  Google Scholar 

  61. Zhao, T.H.; He, Z.Y.; Chu, Y.M.: Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory. 21(3), 413–426 (2021)

    MathSciNet  MATH  Google Scholar 

  62. Zhao, T.H.; Qian, W.M.; Chu, Y.M.: Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 15(4), 1459–1472 (2021)

    MathSciNet  MATH  Google Scholar 

  63. Chu, Y.M.; Nazir, U.; Sohail, M.; Selim, M.M.; Lee, J.R.: Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 5(3), 119 (2021)

    Google Scholar 

  64. Ikram, M.D.; Imran, M.A.; Chu, Y.M.; Akgül, A.: MHD flow of a Newtonian fluid in symmetric channel with ABC fractional model containing hybrid nanoparticles. Comb. Chem. High Throughput Screen. 25(7), 1087–1102 (2022)

    Google Scholar 

  65. Rashid, S.; Sultana, S.; Karaca, Y.; Khalid, A.; Chu, Y.M.: Some further extensions considering discrete proportional fractional operators. Fractals 30(1), 2240026 (2022)

    MATH  Google Scholar 

  66. Jin, F.; Qian, Z.S.; Chu, Y.M.; Rahman, M.U.: On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 12(2), 790–806 (2022)

    MathSciNet  Google Scholar 

  67. Chu, Y.M.; Bashir, S.; Ramzan, M.; Malik, M.Y.: Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Math. Methods Appl. Sci. 2, 558 (2022)

    Google Scholar 

  68. Wang, F.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.M.: Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals 30(2), 2240051 (2022)

    MATH  Google Scholar 

  69. Nazeer, M.; Hussain, F.; Khan, M.I.; El-Zahar, E.R.; Chu, Y.M.; Malik, M.: Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel. Appl. Math. Comput. 420, 126868 (2022)

    MathSciNet  MATH  Google Scholar 

  70. Chu, Y.M.; Shankaralingappa, B.; Gireesha, B.; Alzahrani, F.; Khan, M.I.; Khan, S.U.: Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface. Appl. Math. Comput. 419, 126883 (2022)

    MathSciNet  MATH  Google Scholar 

  71. Ullah, I.: Heat transfer enhancement in Marangoni convection and nonlinear radiative flow of gasoline oil conveying Boehmite alumina and aluminum alloy nanoparticles. Int. Commun. Heat Mass Transf. 132, 105920 (2022)

    Google Scholar 

  72. Ullah, I.: Activation energy with exothermic/endothermic reaction and Coriolis force effects on magnetized nanomaterials flow through Darcy-Forchheimer porous space with variable features. Waves Random Complex Media 2, 1–14 (2022)

    Google Scholar 

  73. Ali, K.; Ahmad, S.; Baluch, O.; Jamshed, W.; Eid, M.R.; Pasha, A.A.: Numerical study of magnetic field interaction with fully developed flow in a vertical duct. Alex. Eng. J. 61, 11351–11363 (2022)

    Google Scholar 

  74. Ali, K.; Faridi, A.A.; Ahmad, S.; Jamshed, W.; Khan, N.; Alam, M.M.: Quasi-linearization analysis for heat and mass transfer of magnetically driven 3rd-grade (Cu-TiO2/engine oil) nanofluid via a convectively heated surface. Int. Commun. Heat Mass Transf. 135, 106060 (2022)

    Google Scholar 

  75. Jamshed, W.; Eid, M.R.; Hussain, S.M.; Abderrahmane, A.; Safdar, R.; Younis, O.; Pasha, A.: A: Physical specifications of MHD mixed convective of Ostwald-de Waele nanofluids in a vented-cavity with inner elliptic cylinder. Int. Commun. Heat Mass Transf. 134, 106038 (2022)

    Google Scholar 

  76. Hafeez, M.B.; Krawczuk, M.; Nisar, K.S.; Jamshed, W.; Pasha, A.A.: A finite element analysis of thermal energy inclination based on ternary hybrid nanoparticles influenced by induced magnetic field. Int. Commun. Heat Mass Transf. 135, 106074 (2022)

    Google Scholar 

  77. Hussain, S.M.; Jamshed, W.; Safdar, R.; Shahzad, F.; Mohd, N.N.A.A.; Ullah, I.: Chemical reaction and thermal characteristiecs of Maxwell nanofluid flow-through solar collector as a potential solar energy cooling application: a modified Buongiorno’s model. E&E 3, 1–24 (2021)

    Google Scholar 

  78. Koulali, A.; Abderrahmane, A.; Jamshed, W.; Hussain, S.M.; Nisar, K.S.; Abdel-Aty, A.H.; Yahia, I.S.; Eid, M.R.: Comparative study on effects of thermal gradient direction on heat exchange between a pure fluid and a nanofluid: employing finite volume method. Coatings 11(12), 1481 (2021)

    Google Scholar 

  79. Hussain, S.M.; Jamshed, W.; Kumar, V.; Kumar, V.; Nisar, K.S.; Eid, M.R.; Safdar, R.; Devi, S.S.U.; Abdel-Aty, A.H.; Yahia, I.S.: Computational analysis of thermal energy distribution of electromagnetic Casson nanofluid across stretched sheet: shape factor effectiveness of solid-particles. Energy Rep. 7, 7460–7477 (2021)

    Google Scholar 

  80. Shahzad, F.; Jamshed, W.; Safdar, R.; Hussain, S.M.; Nasir, N.A.A.M.; Dhange, M.; Nisar, K.S.; Eid, M.R.; Sohail, M.; Alsehli, M.; Elfasakhany, A.: Thermal analysis characterisation of solar-powered ship using Oldroyd hybrid nanofluids in parabolic trough solar collector: an optimal thermal application. Nanotechnol. Rev. 11, 2015–2037 (2022)

    Google Scholar 

  81. Parvin, S.; Mohamed, I.S.S.P.; Al- Duais, F.S.; Hussain, S.M.; Jamshed, W.; Safdar, R.; Eid, M.R.: Partial velocity slip effect on working magneto non-Newtonian nanofluids flow in solar collectors subject to change viscosity and thermal conductivity with temperature. Plos One. 2, 7782 (2022)

    Google Scholar 

  82. Jamshed, W.; Devi, S.S.U.; Prakash, M.; Hussain, S.M.; Eid, M.R.; Nisar, K.S.; Muhammad, T.: Entropy amplified solitary phase relative probe on engine oil based hybrid nanofluid. Chin. J. Phys. 77, 1654–1681 (2022)

    MathSciNet  Google Scholar 

  83. Jamshed, W.; Eid, M.R.; Hussain, S.M.; Abderrahmane, A.; Safdar, R.; Younis, O.; Pasha, A.A.: Physical specifications of MHD mixed convective of Ostwald-de Waele nanofluids in a vented-cavity with inner elliptic cylinder. Int. Commun. Heat Mass Transf. 134, 106038 (2022)

    Google Scholar 

  84. Ali, N.; Nawaz, R.; Zada, L.; Nisar, K.S.; Ali, Z.; Jamshed, W.; Hussain, S.M.; Akgül, E.K.: Numerical investigation of generalized perturbed Zakharov-Kuznetsov equation of fractional order in dusty plasma. Waves Random Complex Media. 6, 889 (2022)

    Google Scholar 

  85. Hussain, S.M.; Jamshed, W.; Akgül, E.K.; Mohd, N.N.A.A.: Mechanical improvement in solar aircraft by using tangent hyperbolic single-phase nanofluid. Proc. Inst. Mech. Eng. Part E. 2, 56 (2021)

    Google Scholar 

  86. Shahzad, F.; Jamshed, W.; Ibrahim, R.W.; Nisar, K.S.; Qureshi, M.A.; Hussain, S.M.; Isa, S.S.P.M.; Eid, M.R.; Abdel-Aty, A.H.; Yahia, I.S.: Comparative numerical study of thermal features analysis between oldroyd-b copper and molybdenum disulfide nanoparticles in engine-oil-based nanofluids flow. Coatings 11(10), 1196 (2021)

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Deanship of Scientific Research, Islamic University of Madinah, Ministry of Education, KSA for supporting this research work through research project grant under Research Group Program/1/804.

Author information

Authors and Affiliations

Authors

Contributions

WJ formulated the problem. WJ and SMH solved the problem. WJ, SMH and MRE computed and scrutinized the results. All the authors equally contributed in writing and proof reading of the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wasim Jamshed.

Ethics declarations

Conflicts of Interest

None.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S.M., Jamshed, W. & Eid, M.R. Solar-HVAC Thermal Investigation Utilizing (Cu-AA7075/C6H9NaO7) MHD-Driven Hybrid Nanofluid Rotating Flow via Second-Order Convergent Technique: A Novel Engineering Study. Arab J Sci Eng 48, 3301–3322 (2023). https://doi.org/10.1007/s13369-022-07140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07140-6

Keywords

Navigation