Skip to main content
Log in

Natural Convective Heat Transfer Analysis of Electrically Conducting Hybrid Nanofluid in a Small Gap Between Rotating Cone and Disc

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In this research, we examine four models—a rotating cone with a stationary disc, a stationary cone with a revolving disc, a co-rotating cone-disc, and a counter-rotating cone-disc—to determine the role of magnetohydrodynamic (MHD) natural convective flow of hybrid nanofluid and heat transfer in a small gap between cone and disc. An amalgamation of two nanoparticles magnesium oxide \(\left(MgO\right)\) and copper oxide \(\left(CuO\right)\) is used in water \(\left({H}_{2}O\right)\). The computations of the proposed model were limited to Reynolds number 12 with a corresponding conical angle at \(\alpha ={4}^{\circ }\). The temperature of a disc surface varies radially. An innovative aspect of the proposed framework is the convective flow of radiative hybrid nanofluid in the presence of buoyancy force and magnetic field. The governing three-dimensional momentum and energy equations are solved for velocity and temperature fields using befitting similarity transformations. The bvp4c technique has been applied. Graphs demonstrate the effect of dimensionless parameters on flow characteristics. Heat transfer rates are calculated at both the cone and disc surfaces for all four models and found that the co-rotation model produces a higher heat transfer rate at the cone surface. The proposed model has characteristics in solar thermal systems, electronics cooling, energy storage, biomedical, and waste heat recovery. This study has been validated with prior research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mooney, M., & Ewart, R. H. (1934). The conicylindrical viscometer. Journal of Applied Physics, 5(11), 350–354. https://doi.org/10.1063/1.1745219

    Article  Google Scholar 

  2. Shevchuk, I. V. (2004). A self-similar solution of Navier-Stokes and energy equations for rotating flows between a cone and a disk. High Temperature, 42(1), 104–110. https://doi.org/10.1023/B:HITE.0000020097.59838.02

    Article  Google Scholar 

  3. Gul, T., Ahmed, Z., Jawad, M., Saeed, A., & Alghamdi, W. (2021). Bio-convectional nanofluid flow due to the thermophoresis and gyrotactic microorganism between the gap of a disk and cone. Brazilian Journal of Physics, 51(3), 687–697. https://doi.org/10.1007/s13538-021-00888-6

    Article  Google Scholar 

  4. Shevchuk, I. V. (2022). An asymptotic expansion method vs a self-similar solution for convective heat transfer in rotating cone-disk systems. Physics of Fluids, 34, 10. https://doi.org/10.1063/5.0120922

    Article  Google Scholar 

  5. Maraj, E. N., Akbar, N. S., Kousar, N., Zehra, I., Muhammad, T. (2023). Thermal enhancement of nano-fluidic transport confined between disk and cone both rotating with distinct angular velocities and heat transfer. International Journal of Numerical Methods for Heat & Fluid Flow. https://doi.org/10.1108/HFF-04-2023-0182

  6. Moatimid, G. M., Mohamed, M. A. A., & Elagamy, K. (2022). A Casson nanofluid flow within the conical gap between rotating surfaces of a cone and a horizontal disc. Scientific Reports, 12(1), 1–21. https://doi.org/10.1038/s41598-022-15094-w

    Article  Google Scholar 

  7. Rooman, M., Shafiq, A., Shah, Z., Vrinceanu, N., Debani, W., & Shutaywi, M. (2022). Statistical modeling for Ree-Eyring nanofluid flow in a conical gap between porous rotating surfaces with entropy generation and Hall Effect. Scientific Reports, 12, 21126. https://doi.org/10.1038/s41598-022-25136-y

    Article  Google Scholar 

  8. Basavarajappa, M., & Bhatta, D. (2022). Study of flow of Buongiorno nanofluid in a conical gap between a cone and a disk. Physics of Fluids, 34, 11. https://doi.org/10.1063/5.0121642

    Article  Google Scholar 

  9. Farooq, U., Waqas, H., Fatima, N., Imran, M., Noreen, S., Bariq, A., & Galal, A. M. (2023). Computational framework of cobalt ferrite and silver-based hybrid nanofluid over a rotating disk and cone: A comparative study. Scientific Reports, 13(1), 5369. https://doi.org/10.1038/s41598-023-32360-7

    Article  Google Scholar 

  10. Srilatha, P., Remidi, S., Nagapavani, M., Singh, H., & Prasannakumara, B. C. (2023). Heat and mass transfer analysis of a fluid flow across the conical gap of a cone-disk apparatus under the thermophoretic particles motion. Energies, 16(2), 952. https://doi.org/10.3390/en16020952

    Article  Google Scholar 

  11. Choi, S. U. S. (1995). Enhancing Thermal Conductivity of Fluid with Nanoparticles. ASME Fluids Engineering Division, 231, 99–105.

  12. Lee, S., Choi, S.U.-S., Li, S., & Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280–289. https://doi.org/10.1115/1.2825978

    Article  Google Scholar 

  13. Turcu, R., Darabont, A., Nan, A., Aldea, N., Macovei, D., Bica, D., & Biro, L. (2015). New polypyrrole-multiwall carbon nanotubes hybrid materials. Journal of Optoelectronics and Advanced Materials, 2006, 643–647.

    Google Scholar 

  14. HemmatEsfe, M., Wongwises, S., Naderi, A., Asadi, A., Safaei, M. R., Rostamian, H., & Karimipour, A. (2015). Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. International Communications in Heat and Mass Transfer, 66, 100–104. https://doi.org/10.1016/j.icheatmasstransfer.2015.05.014

    Article  Google Scholar 

  15. Naveen Kumar, R., Gowda, R. J. P., Gireesha, B. J., & Prasannakumara, B. C. (2021). Non-Newtonian hybrid nanofluid flow over vertically upward/downward moving rotating disk in a Darcy-Forchheimer porous medium. The European Physical Journal Special Topics, 230(5), 1227–1237. https://doi.org/10.1140/epjs/s11734-021-00054-8

    Article  Google Scholar 

  16. Hussain, A., Haider, Q., Rehman, A., Malik, M. Y., Nadeem, S., & Hussain, S. (2021). Heat transport improvement and three-dimensional rotating cone flow of hybrid-based nanofluid. Mathematical Problems in Engineering, 2021, 1–11. https://doi.org/10.1155/2021/6633468

  17. Yıldız, Ç., Arıcı, M., & Karabay, H. (2019). Comparison of a theoretical and experimental thermal conductivity model on the heat transfer performance of Al2O3-SiO2/water hybrid-nanofluid. International Journal of Heat and Mass Transfer, 140, 598–605. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.028

    Article  Google Scholar 

  18. Muhammad, K., Hayat, T., Alsaedi, A., & Ahmad, B. (2021). Melting heat transfer in squeezing flow of basefluid (water), nanofluid (CNTs + water) and hybrid nanofluid (CNTs + CuO + water). Journal of Thermal Analysis and Calorimetry, 143(2), 1157–1174. https://doi.org/10.1007/s10973-020-09391-7

    Article  Google Scholar 

  19. Khashi’I, E. N. S., MdArifin, N., Pop, I., & Nazar, R. (2022). Melting heat transfer in hybrid nanofluid flow along a moving surface. Journal of Thermal Analysis and Calorimetry, 147(1), 567–578. https://doi.org/10.1007/s10973-020-10238-4

    Article  Google Scholar 

  20. Fallah Najafabadi, M., Talebi Rostami, H., Hosseinzadeh, K., & Ganji, D. D. (2023). Hydrothermal study of nanofluid flow in channel by RBF method with exponential boundary conditions. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237(6), 2268–2277. https://doi.org/10.1177/09544089221133909

  21. Hosseinzadeh, S., Hosseinzadeh, Kh., Hasibi, A., & Ganji, D. D. (2022). Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections. Case Studies in Thermal Engineering, 30, 101757. https://doi.org/10.1016/j.csite.2022.101757

    Article  Google Scholar 

  22. Najafabadi, M. F., TalebiRostami, H., Hosseinzadeh, Kh., & Ganji, D. D. (2022). Investigation of nanofluid flow in a vertical channel considering polynomial boundary conditions by Akbari-Ganji’s method. Theoretical and Applied Mechanics Letters, 12(4), 100356. https://doi.org/10.1016/j.taml.2022.100356

    Article  Google Scholar 

  23. Zangooee, M. R., Hosseinzadeh, Kh., & Ganji, D. D. (2022). Hydrothermal analysis of hybrid nanofluid flow on a vertical plate by considering slip condition. Theoretical and Applied Mechanics Letters, 12(5), 100357. https://doi.org/10.1016/j.taml.2022.100357

    Article  Google Scholar 

  24. Kármán, T. V. (1921). Über laminare und turbulente Reibung. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1(4), 233–252. https://doi.org/10.1002/zamm.19210010401

    Article  Google Scholar 

  25. Ibrahim, M. (2020). Numerical analysis of time-dependent flow of viscous fluid due to a stretchable rotating disk with heat and mass transfer. Results in Physics, 18, 103242. https://doi.org/10.1016/j.rinp.2020.103242

    Article  Google Scholar 

  26. Turkyilmazoglu, M. (2016). Flow and heat simultaneously induced by two stretchable rotating disks. Physics of Fluids, 28, 4. https://doi.org/10.1063/1.4945651

    Article  Google Scholar 

  27. Bhattacharyya, A., Seth, G. S., Kumar, R., & Chamkha, A. J. (2020). Simulation of Cattaneo-Christov heat flux on the flow of single and multi-walled carbon nanotubes between two stretchable coaxial rotating disks. Journal of Thermal Analysis and Calorimetry, 139(3), 1655–1670. https://doi.org/10.1007/s10973-019-08644-4

    Article  Google Scholar 

  28. Hussain, A., Hassan, A., Arshad, M., Rehman, A., Matoog, R. T., & Abdeljawad, T. (2021). Numerical simulation and thermal enhancement of multi-based nanofluid over an embrittled cone. Case Studies in Thermal Engineering, 28, 101614. https://doi.org/10.1016/j.csite.2021.101614

    Article  Google Scholar 

  29. Hussain, A., Haider, Q., Rehman, A., Ahmad, H., Baili, J., Aljahdaly, N. H., & Hassan, A. (2021). A thermal conductivity model for hybrid heat and mass transfer investigation of single and multi-wall carbon nano-tubes flow induced by a spinning body. Case Studies in Thermal Engineering, 28, 101449. https://doi.org/10.1016/j.csite.2021.101449

    Article  Google Scholar 

  30. Faghiri, S., Akbari, S., Shafii, M. B., & Hosseinzadeh, Kh. (2022). Hydrothermal analysis of non-Newtonian fluid flow (blood) through the circular tube under prescribed non-uniform wall heat flux. Theoretical and Applied Mechanics Letters, 12(4), 100360. https://doi.org/10.1016/j.taml.2022.100360

    Article  Google Scholar 

  31. Attar, M. A., Roshani, M., Hosseinzadeh, Kh., & Ganji, D. D. (2022). Analytical solution of fractional differential equations by Akbari–Ganji’s method. Partial Differential Equations in Applied Mathematics, 6, 100450. https://doi.org/10.1016/j.padiff.2022.100450

    Article  Google Scholar 

  32. Akbari, S., Faghiri, S., Poureslami, P., Hosseinzadeh, K., & Behshad Shafii, M. (2022). Analytical solution of non-Fourier heat conduction in a 3-D hollow sphere under time-space varying boundary conditions. Heliyon, 8(12), e12496. https://doi.org/10.1016/j.heliyon.2022.e12496

    Article  Google Scholar 

  33. Alfvén, H. (1942). Existence of electromagnetic-hydrodynamic waves. Nature, 150(3805), 405–406. https://doi.org/10.1038/150405d0

    Article  Google Scholar 

  34. Tassaddiq, A., Khan, S., Bilal, M., Gul, T., Mukhtar, S., Shah, Z., & Bonyah, E. (2020). Heat and mass transfer together with hybrid nanofluid flow over a rotating disk. AIP Advances, 10(5), 055317. https://doi.org/10.1063/5.0010181

    Article  Google Scholar 

  35. Sharma, K., Vijay, N., Mabood, F., & Badruddin, I. A. (2022). Numerical simulation of heat and mass transfer in magnetic nanofluid flow by a rotating disk with variable fluid properties. International Communications in Heat and Mass Transfer, 133, 105977. https://doi.org/10.1016/j.icheatmasstransfer.2022.105977

    Article  Google Scholar 

  36. Hosseinzadeh, Kh., Mardani, M. R., Paikar, M., Hasibi, A., Tavangar, T., Nimafar, M., & Shafii, M. B. (2023). Investigation of second grade viscoelastic non-Newtonian nanofluid flow on the curve stretching surface in presence of MHD. Results in Engineering, 17, 100838. https://doi.org/10.1016/j.rineng.2022.100838

    Article  Google Scholar 

  37. Alrabaiah, H., Bilal, M., Khan, M. A., Muhammad, T., & Legas, E. Y. (2022). Parametric estimation of gyrotactic microorganism hybrid nanofluid flow between the conical gap of spinning disk-cone apparatus. Scientific Reports, 12(1), 1–14. https://doi.org/10.1038/s41598-021-03077-2

    Article  Google Scholar 

  38. Usman, M., Gul, T., Khan, A., Alsubie, A., & Ullah, M. Z. (2021). Electromagnetic couple stress film flow of hybrid nanofluid over an unsteady rotating disc. International Communications in Heat and Mass Transfer, 127, 105562. https://doi.org/10.1016/j.icheatmasstransfer.2021.105562

    Article  Google Scholar 

  39. Ramzan, M., Riasat, S., Kadry, S., Kuntha, P., Nam, Y., & Howari, F. (2020). Numerical analysis of carbon nanotube-based nanofluid unsteady flow amid two rotating disks with hall current coatings and homogeneous–heterogeneous reactions. Coatings, 10(1), 48. https://doi.org/10.3390/coatings10010048

    Article  Google Scholar 

  40. Punith Gowda, R. J., Naveen Kumar, R., Aldalbahi, A., Issakhov, A., Prasannakumara, B. C., Rahimi-Gorji, M., & Rahaman, M. (2021). Thermophoretic particle deposition in time-dependent flow of hybrid nanofluid over rotating and vertically upward/ downward moving disk. Surfaces and Interfaces, 22, 100864. https://doi.org/10.1016/j.surfin.2020.100864

    Article  Google Scholar 

  41. Reddy, M. G., Kumar, N., Prasannakumara, B. C., Rudraswamy, N. G., & Kumar, K. G. (2021). Magnetohydrodynamic flow and heat transfer of a hybrid nanofluid over a rotating disk by considering Arrhenius energy. Communications in Theoretical Physics, 73(4), 045002. https://doi.org/10.1088/1572-9494/abdaa5

  42. Jayadevamurthy, P. G. R., Rangaswamy, N. k., Prasannakumara, B. C., & Nisar, K. S. (2024). Emphasis on unsteady dynamics of bioconvective hybrid nanofluid flow over an upward–downward moving rotating disk. Numerical Methods for Partial Differential Equations, 40(1), e22680. https://doi.org/10.1002/num.22680

  43. Zangooee, M. R., Hosseinzadeh, Kh., & Ganji, D. D. (2023). Hydrothermal analysis of Ag and CuO hybrid NPs suspended in mixture of water 20%+EG 80% between two concentric cylinders. Case Studies in Thermal Engineering, 50, 103398. https://doi.org/10.1016/j.csite.2023.103398

    Article  Google Scholar 

  44. Talebi Rostami, H., Fallah Najafabadi, M., Hosseinzadeh, K., & Ganji, D. D. (2022). Investigation of mixture-based dusty hybrid nanofluid flow in porous media affected by magnetic field using RBF method. International Journal of Ambient Energy, 43(1), 6425–6435. https://doi.org/10.1080/01430750.2021.2023041

  45. Mahanthesh, B., Gireesha, B. J., & Gorla, R. S. R. (2017). Unsteady three-dimensional MHD flow of a nano Eyring-Powell fluid past a convectively heated stretching sheet in the presence of thermal radiation, viscous dissipation and Joule heating. Journal of the Association of Arab Universities for Basic and Applied Sciences, 23,75–84. https://doi.org/10.1016/j.jaubas.2016.05.004

  46. Ibrahim, W., & Gamachu, D. (2022). Entropy generation in radiative magneto-hydrodynamic mixed convective flow of viscoelastic hybrid nanofluid over a spinning disk. Heliyon, 8(12), e11854. https://doi.org/10.1016/j.heliyon.2022.e11854

    Article  Google Scholar 

  47. Ramzan, M., Kumam, P., Lone, S. A., Seangwattana, T., Saeed, A., & Galal, A. M. (2023). A theoretical analysis of the ternary hybrid nanofluid flows over a non-isothermal and non-isosolutal multiple geometries. Heliyon, 9(4), e14875. https://doi.org/10.1016/j.heliyon.2023.e14875

    Article  Google Scholar 

  48. Mahesh, A., Varma, S. V. K., Raju, C. S. K., Babu, M. J., Vajravelu, K., & Al-Kouz, W. (2021). Significance of non-Fourier heat flux and radiation on PEG – water based hybrid nanofluid flow among revolving disks with chemical reaction and entropy generation optimization. International Communications in Heat and Mass Transfer, 127, 105572. https://doi.org/10.1016/j.icheatmasstransfer.2021.105572

    Article  Google Scholar 

  49. Sreedevi, P., & Reddy, P. S. (2019). Effect of SWCNTs and MWCNTs Maxwell MHD nanofluid flow between two stretchable rotating disks under convective boundary conditions. Heat Transfer—Asian Research, 48(8), 4105–4132. https://doi.org/10.1002/htj.21584

    Article  Google Scholar 

  50. Ahmed, J., Khan, M., & Ahmad, L. (2019). Transient thin-film spin-coating flow of chemically reactive and radiative Maxwell nanofluid over a rotating disk. Applied Physics A, 125(3), 1–17. https://doi.org/10.1007/s00339-019-2424-0

    Article  Google Scholar 

  51. Rana, P., & Gupta, G. (2022). FEM solution to quadratic convective and radiative flow of Ag-MgO/H2O hybrid nanofluid over a rotating cone with Hall current: Optimization using Response Surface Methodology. Mathematics and Computers in Simulation, 201, 121–140. https://doi.org/10.1016/j.matcom.2022.05.012

    Article  MathSciNet  Google Scholar 

  52. Gulzar, M. M., Aslam, A., Waqas, M., Javed, M. A., & Hosseinzadeh, K. (2020). A nonlinear mathematical analysis for magneto-hyperbolic-tangent liquid featuring simultaneous aspects of magnetic field, heat source and thermal stratification. Applied Nanoscience, 10(12), 4513–4518. https://doi.org/10.1007/s13204-020-01483-y

    Article  Google Scholar 

  53. Alipour, N., Jafari, B., & Hosseinzadeh, K. (2023). Optimization of wavy trapezoidal porous cavity containing mixture hybrid nanofluid (water/ethylene glycol Go–Al2O3) by response surface method. Scientific Reports, 13(1), 1–24. https://doi.org/10.1038/s41598-023-28916-2

    Article  Google Scholar 

  54. Mahboobtosi, M., Hosseinzadeh, Kh., & Ganji, D. D. (2023). Entropy generation analysis and hydrothermal optimization of ternary hybrid nanofluid flow suspended in polymer over curved stretching surface. International Journal of Thermofluids, 20, 100507. https://doi.org/10.1016/j.ijft.2023.100507

    Article  Google Scholar 

  55. Turkyilmazoglu, M. (2020). On the fluid flow and heat transfer between a cone and a disk both stationary or rotating. Mathematics and Computers in Simulation, 177, 329–340. https://doi.org/10.1016/j.matcom.2020.04.004

    Article  MathSciNet  Google Scholar 

  56. Wang, F., Rani, S. P., Sarada, K., Gowda, R. P., Zahran, H. Y., & Mahmoud, E. E. (2022). The effects of nanoparticle aggregation and radiation on the flow of nanofluid between the gap of a disk and cone. Case Studies in Thermal Engineering, 33, 101930. https://doi.org/10.1016/j.csite.2022.101930

  57. Sulochana, C., Aparna, S. R., & Sandeep, N. (2020). Magnetohydrodynamic MgO/CuO-water hybrid nanofluid flow driven by two distinct geometries. Heat Transfer, 49(6), 3663–3682. https://doi.org/10.1002/htj.21794

    Article  Google Scholar 

  58. Khan, U., Shafiq, A., Zaib, A., & Baleanu, D. (2020). Hybrid nanofluid on mixed convective radiative flow from an irregular variably thick moving surface with convex and concave effects. Case Studies in Thermal Engineering, 21, 100660. https://doi.org/10.1016/j.csite.2020.100660

    Article  Google Scholar 

  59. Khashi’ie, N. S., Arifin, N. M., Pop, I., & Wahid, N. S. (2020). Flow and heat transfer of hybrid nanofluid over a permeable shrinking cylinder with Joule heating: A comparative analysis. Alexandria Engineering Journal, 59(3), 1787–1798. https://doi.org/10.1016/j.aej.2020.04.048

    Article  Google Scholar 

  60. Wahid, N. S., Arifin, N. M., Khashi’ie, N. S., Pop, I., Bachok, N., & Hafidzuddin, M. E. H. (2021). Flow and heat transfer of hybrid nanofluid induced by an exponentially stretching/shrinking curved surface. Case Studies in Thermal Engineering, 25, 100982. https://doi.org/10.1016/j.csite.2021.100982

    Article  Google Scholar 

  61. Olver, P. J. (1993). Applications of Lie groups to differential equations (Vol. 107). Springer Science & Business Media

  62. Shevchuk, I. V. (2009). Convective heat and mass transfer in rotating disk systems (Vol. 45). Berlin: Springer. https://doi.org/10.1007/978-3-642-00718-7

  63. Gul, T., Kashifullah, Bilal, M., Alghamdi, W., Asjad, M. I., Abdeljawad, T. (2021). Hybrid nanofluid flow within the conical gap between the cone and the surface of a rotating disk. Scientific Reports, 11(1), 1180. https://doi.org/10.1038/s41598-020-80750-y

  64. Gul, T., Gul, R., Noman, W., Saeed, A., Mukhtar, S., Alghamdi, W., & Alrabaiah, H. (2020). CNTs-nanofluid flow in a rotating system between the gap of a disk and cone. Physica Scripta, 95(12), 125202. https://doi.org/10.1088/1402-4896/abbf1e

Download references

Funding

Geetika received funding provided by CSIR-UGC through grant no.- 09/1313(0001)/2020-EMR-I.

Author information

Authors and Affiliations

Authors

Contributions

Geetika Saini: data curation, conceptualization, investigation, validation, writing manuscript, edited and submitted the manuscript; Hanumagowda B.N: data curation, formal analysis, supervision. All authors have reviewed and approved the final manuscript.

Corresponding author

Correspondence to Geetika Saini.

Ethics declarations

Ethical Approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, G., Hanumagowda, B.N. Natural Convective Heat Transfer Analysis of Electrically Conducting Hybrid Nanofluid in a Small Gap Between Rotating Cone and Disc. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01308-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01308-0

Keywords

Navigation