Skip to main content
Log in

The Effects of Triton X-100 and Tween 80 Surfactants on the Thermal Performance of a Nano-Lubricant: An Experimental Study

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In this experimental study, experiments were carried out using a nano-lubricant consisting of polyol ester (POE)—titanium dioxide (TiO2)—surfactant instead of POE oil used in the compressor in a refrigeration system cycle test apparatus. The main aim of the study was to provide more efficient operation of the refrigeration system. Triton X100 (TX-100) and sorbitan polyoxyethylene monooleate (Tween 80) were used as the surface-active material. Nano-lubricants were formed by mixing TiO2 nanoparticles with POE oil at different concentrations. At these different nanoparticle concentrations, 0.5% of the surfactant was used. The reason for using a surfactant in the nano-lubricant was to prevent agglomeration in the mixture. TX-100 and Tween 80 surfactants were also used to study the effects of the surfactant on the nano-lubricant. Experiments were carried out using three different concentrations and three measurements for each concentration using the POE/TiO2/surfactant nano-lubricants. The best improvement was achieved when a nano-lubricant consisting of a mixture of TX-100 and POE oil with a concentration of 1.5% TiO2 was used. The improvement in coefficient of performance (COP) for the refrigeration cycle was 39.42%.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yüzer SN (2005) Investigation of the relationship between lubricating oil and coolant in refrigerator compressors. Master Thesis, ITU

  2. Bianco, V., Vafai, K., Manca, O., & Nardini, S. (2015). Heat transfer enhancement with nanofluids. Boca Raton: CRC Press, 1(2), 12–19.

    Google Scholar 

  3. Sözen, A., Gürü, M., Menlik, T., Karakaya, U., & Çiftçi, E. (2018). Experimental comparison of Triton X-100 and sodium dodecyl benzene sulfonate surfactants on thermal performance of TiO2–deionized water nanofluid in a thermosiphon. Exp Heat Transf, 31(5), 450–469. https://doi.org/10.1080/08916152.2018.1445673

    Article  Google Scholar 

  4. Lee, D., & Park, M. (2020). High efficient composite stringer forming machine for energy saving. Int J Precis Eng Manuf Green Technol. https://doi.org/10.1007/s40684-020-00251-1

    Article  Google Scholar 

  5. Azman, N. F., & Samion, S. (2019). Dispersion stability and lubrication mechanism of nanolubricants: a review. Int J Precis Eng Manuf Green Technol, 6(2), 393–414. https://doi.org/10.1007/s40684-019-00080-x

    Article  Google Scholar 

  6. Diao, Y. H., Li, C. Z., Zhao, Y. H., Liu, Y., & Wang, S. (2015). Experimental investigation on the pool boiling characteristics and critical heat flux of Cu-R141b nanorefrigerant under atmospheric pressure. International Journal of Heat and Mass Transfer, 89, 110–115. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.043

    Article  Google Scholar 

  7. Ouikhalfan, M., Labihi, A., Belaqziz, M., Chehouani, H., Benhamou, B., Sarı, A., & Belfkira, A. (2019). Stability and thermal conductivity enhancement of aqueous nanofluid based on surfactant-modified TiO2. J Dispers Sci Technol. https://doi.org/10.1080/01932691.2019.1578665

    Article  Google Scholar 

  8. Tang, X., Zhao, Y. H., & Diao, Y. H. (2014). Experimental investigation of the nucleate pool boiling heat transfer characteristics of δ-Al2O3-R141b nanofluids on a horizontal plate. Experimental Thermal and Fluid Science, 52, 88–96. https://doi.org/10.1016/j.expthermflusci.2013.08.025

    Article  Google Scholar 

  9. Kedzierski, M. A. (2011). Effect of Al2O3 nanolubricant on R134a pool boiling heat transfer. Int J Refriger, 34(2), 498–508. https://doi.org/10.1016/j.ijrefrig.2010.10.007

    Article  Google Scholar 

  10. Peng, H., Ding, G., & Hu, H. (2011). Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid. Experimental Thermal and Fluid Science, 35(6), 960–970. https://doi.org/10.1016/j.expthermflusci.2011.01.016

    Article  Google Scholar 

  11. Elghanam, R. I., Fawal, M. E., Aziz, R. A., Skr, M. H., & Khalifa, A. H. (2011). Experimental study of nucleate boiling heat transfer enhancement by using surfactant. Ain Shams Eng J, 2(3–4), 195–209. https://doi.org/10.1016/j.asej.2011.09.001

    Article  Google Scholar 

  12. Choi, T. J., Jang, S. P., & Kedzierski, M. A. (2018). Effect of surfactants on the stability and solar thermal absorption characteristics of water-based nanofluids with multi-walled carbon nanotubes. International Journal of Heat and Mass Transfer, 122, 483–490. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.141

    Article  Google Scholar 

  13. Hu, H., Peng, H., & Ding, G. (2013). Nucleate pool boiling heat transfer characteristics of refrigerant/nanolubricant mixture with surfactant. Int J Refriger, 36(3), 1045–1055. https://doi.org/10.1016/j.ijrefrig.2012.12.015

    Article  Google Scholar 

  14. Arasu, A. V., Kumar, D. D., & Khan, A. I. (2019). Experimental investigation of thermal conductivity and stability of TiO2-Ag/water nanocomposite fluid with SDBS and SDS surfactants. Thermochimica Acta. https://doi.org/10.1016/j.tca.2019.178308

    Article  Google Scholar 

  15. Ramchandra AA, Kadam R, Pise AT (2020) Heat transfer enhancement in separation process of ethanol from ethanol water mixture by using surfactants. Fine Chem Eng. https://doi.org/10.37256/fce.112020212.9-14

  16. Çiftçi E, Sözen A (2020) Heat transfer enhancement in pool boiling and condensation using h-BN/DCM and SiO2/DCM nanofluids: experimental and numerical comparison. Int J Numer Methods Heat Fluid Flow. https://doi.org/10.1108/HFF-02-2020-0113

  17. Al-Waeli, A. H., Chaichan, M. T., Kazem, H. A., & Sopian, K. (2019). Evaluation and analysis of nanofluid and surfactant impact on photovoltaic-thermal systems. Case Stud Thermal Eng, 13, 100392. https://doi.org/10.1016/j.csite.2019.100392

    Article  Google Scholar 

  18. Sriharan, G., Herikrishnan, S., & Ali, H. M. (2020). Experimental investigation on the efectiveness of MHTHS using different metal oxide-based nanofluids. JTAC. https://doi.org/10.1007/s10973-020-09779-5

    Article  Google Scholar 

  19. Jeong, C., Joung, C., Lee, S., Feng, M. Q., & Park, Y. B. (2020). Carbon nanocomposite based mechanical sensing and energy harvesting. Int J Precis Eng Manuf Green Technol. https://doi.org/10.1007/s40684-019-00154-w

    Article  Google Scholar 

  20. Gao, M., Li, L., Wang, Q., & Liu, C. (2020). Energy efficiency and dynamic analysis of a novel hydraulic system with double actuator. Int J Precis Eng Manuf Green Technol. https://doi.org/10.1007/s40684-019-00182-6

    Article  Google Scholar 

  21. Celtikli OD (2013) Anyonik ve katyonik yüzey aktif maddelerin toprak ortamında parçalanabilirliklerinin tarla koşullarında belirlenmesi. MS Thesis. Namık Kemal Üniversitesi

  22. Yaramaz, Ö. (1984). İzmir körfezinde evsel ve endüstri atıklarının neden olduğu deterjan ve bor kirliliğinin araştırılması. Ege Üniversitesi Hidrobiyoloji ve Su Ürünleri Araştırma Uygulama Merkezi, Urla-İzmir: Diss. Doktora tezi.

    Google Scholar 

  23. Yüksel, E. (2009). Elektrofenton yöntemiyle yüzey aktif madde içeren atıksuların arıtılması. Doktora Tezi, Sakarya Üniversitesi: Diss.

    Google Scholar 

  24. Lavanya, M., Reddy, Y. V. M., Kiranmai, S., Manthrapudi, V., & Gajulapalle, M. (2015). Selective determination of dopamine in presence of ascorbic acid by using Triton X-100 poly (safranin) modified carbon paste electrode. Anal Bioanal Electrochem, 7, 595.

    Google Scholar 

  25. Lin, C.-Y., Wang, J.-C., & Chen, T.-C. (2011). Analysis of suspension and heat transfer characteristics of Al2O3 nanofluids prepared through ultrasonic vibration. Applied Energy, 88(12), 4527–4533. https://doi.org/10.1016/j.apenergy.2011.05.035

    Article  Google Scholar 

  26. Zhang, J. Y., Boyd, I. W., & O’sullivan, B. J., Hurley, P. K., Kelly, P. V. and Senateur, J. P. (2002). Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy. Journal of Non-Crystalline Solids, 303(1), 134–138. https://doi.org/10.1016/S0022-3093(02)00973-0

    Article  Google Scholar 

  27. Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J Nat Sci 42(5):357–361. https://kasetsartjournal.ku.ac.th/kuj_files/2009/A0903200935177812.pdf

  28. Akkaya M, Menlik T, Sözen A, Gürü M (2020) Experimental investigation of nanolubricant usage in a cooling system at different nanoparticle concentrations. Heat Transf Res 51(11):949–965. https://doi.org/10.1615/HeatTransRes.2020033812

  29. Akpınar, K.Ebru (2005), "Deneysel çalışmalardaki hata analizine bir örnek: Kurutma deneylerindeki hata analizi", Mühendis ve Makine Cilt:46, Sayı:540. https://www1.mmo.org.tr/Resimler/Dosya_Ekler/0e52b27a7a5d6a1_Ek.Pdf

  30. Kline, S. J., and F. A. Mc Clintock. (1953)," Describing Uncertainties in Single Sample Experiments", Mech. Engr: 3.

  31. Holman, J. P. (2001). Experimental Methods for Engineers (7th ed.). New York, NY: McGraw-Hill.

    Google Scholar 

Download references

Funding

The authors received support for nanoparticle analysis from the scientific and technological Studies Application and research center (KMU-Biltem-Karaman/Turkey). Part of this study is part of the PhD Thesis of Mustafa Akkaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Akkaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkaya, M., Menlik, T., Sözen, A. et al. The Effects of Triton X-100 and Tween 80 Surfactants on the Thermal Performance of a Nano-Lubricant: An Experimental Study. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 955–967 (2021). https://doi.org/10.1007/s40684-020-00280-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00280-w

Keywords

Navigation