Skip to main content
Log in

A Novel 60 Gbps Bidirectional Free Space Optical Link Based on a Single Laser Source

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

We propose a single laser source-based free space optical link for transmission of bidirectional data of three different channels between modular data centers, where each channel has a data rate of 20 Gbps. The downlink channels are transmitted using a combination of differential quadrature phase shift keying (DQPSK) and pulse amplitude modulation (PAM). The uplink channels are transmitted using On-Off keying (OOK). The optical signals are transmitted over a 500-m free space optical (FSO) link based on Gamma–Gamma channel model. A regenerative wavelength converter is used to generate multiple optical pulsed carriers from the received downlink optical signals. The performance of the proposed architecture is evaluated under medium turbulence condition, which represents the FSO channel in a data center scenario. Our simulation results show that the proposed architecture gives acceptable bit-error-rate (BER) results. The architecture can be used as a potential substitute to fiber-based interconnects in a data center or a general point link in a passive optical network (PON), enabling high data-rate and cost-efficient transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Le, S.T.; Schuh, K.; Dischler, R.; Buchali, F.; Schmalen, L.; Buelow, H.: Beyond 400 Gb/s direct detection over 80 km for data center interconnect applications. J. Lightwave Technol. 38(2), 538–545 (2020). https://doi.org/10.1109/JLT.2019.2941690

    Article  Google Scholar 

  2. Simpanen, E.; Gustavsson, J.S.; Larsson, A.; Karlsson, M.; Bickham, S.R.: 1060 nm single-mode VCSEL and single-mode fiber links for long-reach optical interconnects. J. Lightwave Technol. 37(13), 2963–2969 (2019)

    Article  Google Scholar 

  3. Denoyer, G.; Cole, C.; Santipo, A.; Russo, R.; Robinson, C.; Li, L.; Zhou, Y.: Hybrid silicon photonic circuits and transceiver for 50 Gb/s NRZ transmission over single-mode fiber. J. Lightwave Technol. 33(6), 1247–1254 (2015)

    Article  Google Scholar 

  4. Chen, T.; Gao, X.; Chen, G.: The features, hardware, and architectures of data center networks: a survey. J. Parallel Distrib. Comput. 96, 45–74 (2016)

    Article  Google Scholar 

  5. Mirza, J.; Aljohani, A.J.; Raza, A.; Iqbal, S.; Ghafoor, S.: A multi-hop free space optical link based on a regenerative relay. Alex. Eng. J. 61(2), 1459–1467 (2022)

    Article  Google Scholar 

  6. Mirza, J.; Ghafoor, S.; Hussain, A.: All-optical generation and transmission of multiple ultrawideband signals over free space optical link. Opt. Eng. 58(5), 056103 (2019)

    Article  Google Scholar 

  7. Khan, M.S.; Ghafoor, S.; Mirza, J.; Zaidi, S.H.: Review of studies that integrate the free space optics with fiber optics. In: 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT and AI (HONET-ICT). IEEE, pp. 074–079 (2019).

  8. Bhatnagar, M.R.; Ghassemlooy, Z.: Performance analysis of Gamma–Gamma Fading FSO MIMO links with pointing errors. J. Lightwave Technol. 34, 2158–2169 (2016)

    Article  Google Scholar 

  9. Gappmair, W.; Flohberger, M.: Error performance of coded FSO links in turbulent atmosphere modeled by Gamma–Gamma distributions. IEEE Trans. Wirel. Commun. 8(5), 2209–2213 (2009)

    Article  Google Scholar 

  10. Andrews, L.C.; Phillips, R.L.: Laser beam propagation through random media, vol. 152. SPIE Press, Bellingham, WA (2005).

  11. Wang, Z.; Zhong, W.-D.; Yu, C.: Performance improvement of OOK free-space optical communication systems by coherent detection and dynamic decision threshold in atmospheric turbulence conditions. IEEE Photonics Technol. Lett. 24(22), 2035–2037 (2012)

    Article  Google Scholar 

  12. Yang, F.; Gao, J.; Liu, S.: Novel visible light communication approach based on hybrid OOK and ACO-OFDM. IEEE Photonics Technol. Lett. 28(14), 1585–1588 (2016)

    Article  Google Scholar 

  13. Khallaf, H.S.; Shalaby, H.M.; Garrido-Balsells, J.M.; Sampei, S.: Performance analysis of a hybrid QAM-MPPM technique over turbulence-free and Gamma–Gamma free-space optical channels. IEEE/OSA J. Opt. Commun. Netw. 9(2), 161–171 (2017)

    Article  Google Scholar 

  14. Dabiri, M.T.; Sadough, S.M.S.: Generalized blind detection of OOK modulation for free-space optical communication. IEEE Commun. Lett. 21(10), 2170–2173 (2017)

    Article  Google Scholar 

  15. Padhy, J.B.; Patnaik, B.: Design and analysis of multiplexed FSO system with DPSK and Manchester coding. In: 2017 3rd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), pp. 1–6. IEEE (2017).

  16. Yeh, C.H.; Chow, C.W.; Gu, C.S.; Guo, B.S.; Cheng, Y.J.; Chen, J.H.: Performance analysis of free space optical communication traffic integrated with passive optical network. Electron. Lett. 54(21), 1228–1229 (2018). https://doi.org/10.1049/el.2018.5559

    Article  Google Scholar 

  17. Huang, X.; Xie, X.; Song, J.; Duan, T.; Hu, H.; Xu, X.; Su, Y.: Performance comparison of all-optical amplify-and-forward relaying fso communication systems with OOK and DPSK modulations. IEEE Photonics J. 10(4), 1–11 (2018)

    Article  Google Scholar 

  18. Yeh, C.-H.; Lin, W.-P.; Luo, C.-M.; Xie, Y.-R.; Chang, Y.-J.; Chow, C.-W.: Utilizing single lightwave for delivering baseband/FSO/MMW traffics simultaneously in PON architecture. IEEE Access 7, 138927–138931 (2019)

    Article  Google Scholar 

  19. Aljohani, A.J.; Mirza, J.; Ghafoor, S.: A novel regeneration technique for free space optical communication systems. IEEE Commun. Lett. 25(1), 196–199 (2021). https://doi.org/10.1109/LCOMM.2020.3029591

    Article  Google Scholar 

  20. Ghafoor, S.; Petropoulos, P.: Effect of dispersion slope of highly nonlinear fibre on the performance of self phase modulation based 2R-optical regenerator. In: 2010 2nd International Conference on Computer Technology and Development, pp. 144–148 (2010). https://doi.org/10.1109/ICCTD.2010.5646133

  21. Wang, Z.; Zhong, W.-D.; Fu, S.; Lin, C.: Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique. IEEE Photonics J. 1(6), 277–285 (2009)

    Article  Google Scholar 

  22. Song, X.; Cheng, J.: Joint estimation of the Lognormal–Rician atmospheric turbulence model by the generalized method of moments. Optics Commun. 285(24), 4727–4732 (2012)

    Article  Google Scholar 

  23. Popoola, W.O.; Ghassemlooy, Z.: BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence. J. Lightwave Technol. 27(8), 967–973 (2009)

    Article  Google Scholar 

  24. Ghassemlooy, Z.; Popoola, W.O.; Leitgeb, E.: Free-space optical communication using subcarrier modulation in Gamma–Gamma atmospheric turbulence. In: 2007 9th International Conference on Transparent Optical Networks, vol. 3. IEEE, pp. 156–160 (2007)

Download references

Acknowledgements

This research was sponsored by the King Fahd University of Petroleum and Minerals, Dhahran-31261, Saudi Arabia. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Ghafoor.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafoor, S., Mirza, J., Kousar, T. et al. A Novel 60 Gbps Bidirectional Free Space Optical Link Based on a Single Laser Source. Arab J Sci Eng 47, 14721–14729 (2022). https://doi.org/10.1007/s13369-022-06975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06975-3

Keywords

Navigation