Skip to main content
Log in

Implementational Aspects of Various Feeding Techniques for mmWave 5G Antennas

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Future wireless communication systems need to be redesigned for millimeter wave carrier frequencies to accommodate higher bandwidth applications. The free space power loss for higher frequencies is higher compared to the sub-6 GHz commercial wireless systems. One of the approaches to realize a feasible data link is to design and deploy high gain antennas on the transceivers responsible for communication. To design high gain antennas with small form factor, it is important to closely consider the feeding technique of the antenna. In this article, various aspects of numerous feeding techniques are illustrated. Initially, a generic layout of the specific feeding method is explained followed by the nuances of feeding line design for a range of commonly available substrates. A comparison of different feeding techniques is also presented, followed by the merits and demerits of the respective feeding technique in the context of 28 GHz based antennas. Various design examples published in the recent literature are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Rappaport, T.S., et al.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)

    Article  Google Scholar 

  2. Hong, X.; Wang, J.; Wang, C.; Shi, J.: Cognitive radio in 5G: a perspective on energy-spectral efficiency trade-off. IEEE Commun. Mag. 52(7), 46–53 (2014)

    Article  Google Scholar 

  3. Pi, Z.; Khan, F.: An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011)

    Article  Google Scholar 

  4. Rappaport, T.S.: Wireless Communications: Principles and Practice, Vol. 2. Prentice Hall PTR, New Jersey (1996)

    MATH  Google Scholar 

  5. Pinapati, S.P.; Brittain, J.; Caldow, A.; Fumeaux, C.: Planar feeding techniques for wearable textile antennas. IEEE Trans. Compon. Packag. Manuf. Technol. 10(7), 1232–1239 (2020)

    Article  Google Scholar 

  6. Gautam, A.K.; Bisht, A.; Kr Kanaujia, B.: A wideband antenna with defected ground plane for WLAN/WiMAX applications. AEU Int. J. Electron. Commun. 70(3), 354–358 (2016)

    Article  Google Scholar 

  7. Sipal, D.; Abegaonkar, M.P.; Koul, S.K.: Easily extendable compact planar UWB MIMO antenna array. IEEE Antennas Wirel. Propag. Lett. 16, 2328–2331 (2017)

    Article  Google Scholar 

  8. Garg, R., et al.: Microstrip Antenna Design Handbook. Artech house, Norwood (2001)

    Google Scholar 

  9. Karthikeya, G.S.; Koul, S.K.: Insights into fabrication and measurements of PCB-based passive millimeter wave antennas. IETE Tech. Rev. 38, 1–8 (2020)

    Google Scholar 

  10. Alhalabi, R.A.; Rebeiz, G.M.: High-efficiency angled-dipole antennas for millimeter-wave phased array applications. IEEE Trans. Antennas Propag. 56(10), 3136–3142 (2008)

    Article  Google Scholar 

  11. Hsu, H.; Huang, T.; Tsao, Y.: Ka-band antipodal dual exponentially tapered slot antenna for next generation mobile communication system applications. In: 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpar, pp. 1051–1054 (2017)

  12. Desai, A.; Patel, R.; Upadhyaya, T.; Kaushal, H.; Dhasarathan, V.: Multiband inverted E and U shaped compact antenna for digital broadcasting, wireless, and sub 6 GHz 5G applications. AEU Int. J. Electron. Commun. 123, 153296 (2020)

    Article  Google Scholar 

  13. Koul, S. K.; Poddar, A. K.; Sadananda, K. G.; Rohde, U. L.: Conformal Antenna Module With 3D-Printed Radome. U.S. Patent Application 17/221,965, filed December 9, 2021

  14. Roh, W., et al.: Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag. 52(2), 106–113 (2014)

    Article  Google Scholar 

  15. Bang, J.; Choi, J.: A compact hemispherical beam-coverage phased array antenna unit for 5G mm-wave applications. IEEE Access 8, 139715–139726 (2020)

    Article  Google Scholar 

  16. Hill, T.A.; Kelly, J.R.; Khalily, M.; Brown, T.W.C.: Cascaded Fresnel lens antenna for scan loss mitigation in millimeter-wave access points. IEEE Trans. Antennas Propag. 68(10), 6879–6892 (2020)

    Article  Google Scholar 

  17. Ramanujam, P.; Arumugam, C.; Venkatesan, R.; Ponnusamy, M.: Design of compact patch antenna with enhanced gain and bandwidth for 5G mm-wave applications. IET Microw. Antennas Propag. 14(12), 1455–1461 (2020)

    Article  Google Scholar 

  18. Bondarik, A.; Sjöberg, D.: Gridded parasitic patch stacked microstrip array antenna for 60 GHz band. IET Microw. Antennas Propag. 14(8), 712–717 (2020)

    Article  Google Scholar 

  19. Choi, J.; Choi, J.; Hwang, W.: Miniature millimeter-wave 5G antenna fabricated using anodized aluminum oxide for mobile devices. ACS Omega 5, 26206–26210 (2020)

    Article  Google Scholar 

  20. Wang, H.; Kedze, K.E.; Park, I.: A high-gain and wideband series-fed angled printed dipole array antenna. IEEE Trans. Antennas Propag. 68(7), 5708–5713 (2020)

    Article  Google Scholar 

  21. Wang, H.; Park, I.: Characteristics of the angled printed dipole array antenna with different numbers of dipole elements. J. Electromagn. Eng. Sci. 20(3), 183–189 (2020)

    Article  Google Scholar 

  22. Liu, Y.; Zhao, C.; Yue, Z.; Ren, A.; Jia, Y.: A horizontally polarized end-fire antenna with complete ground for 5G mmWave applications. Microw. Opt. Technol. Lett. 62, 3936–3944 (2020)

    Article  Google Scholar 

  23. Samson Daniel, R.: A CPW-fed rectangular nested loop antenna for penta band wireless application. AEU Int. J. Electron. Commun. 139, 153891 (2021)

    Article  Google Scholar 

  24. Sonak, R.; Ameen, M.; Chaudhary, R.K.: CPW-fed electrically small open-ended zeroth order resonating metamaterial antenna with dual-band features for GPS/WiMAX/WLAN applications. AEU Int. J. Electr. Commun. 104, 99–107 (2019)

    Article  Google Scholar 

  25. Simons, R.; Simons, R.N.: Coplanar Waveguide Circuits, Components, and Systems, Vol. 15. Wiley, New York (2001)

    Book  MATH  Google Scholar 

  26. Sultan, K.S.; Abdullah, H.H.; Abdallah, E.A.; El-Hennawy, H.S.: Metasurface-based dual polarized MIMO antenna for 5G smartphones Using CMA. IEEE Access 8, 37250–37264 (2020)

    Article  Google Scholar 

  27. Jilani, S.F.; Abbas, S.M.; Esselle, K.P.; Alomainy, A.: Millimeter-wave frequency reconfigurable T-shaped antenna for 5G networks. In: 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Abu Dhabi, pp. 100–102 (2015)

  28. Karthikeya, G.S.; Abegaonkar, M.P.; Koul, S.K.: CPW fed wideband corner bent antenna for 5G mobile terminals. IEEE Access 7, 10967–10975 (2019)

    Article  Google Scholar 

  29. Zhai, G.; Cheng, Y.; Yin, Q.; Zhu, S.; Gao, J.: Uniplanar millimeter-wave log-periodic dipole array antenna fed by coplanar waveguide. Int. J. Antennas Propag. 2013, 1–5 (2013)

    Google Scholar 

  30. Karthikeya, G.S.; Abegaonkar, M.P.; Koul, S.K.: CPW fed conformal folded dipole with pattern diversity for 5G mobile terminals. Prog. Electromag. Res. C 87, 199–212 (2018)

    Article  Google Scholar 

  31. Jang, T.H.; Kim, H.Y.; Kang, D.M.; Kim, S.H.; Park, C.S.: 60 GHz low-profile, wideband dual-polarized U-Slot coupled patch antenna with high isolation. IEEE Trans. Antennas Propag. 67(7), 4453–4462 (2019)

    Article  Google Scholar 

  32. Zheng, D.-Z.; Chu, Q.-X.: The design of dual-polarized antenna for base station applications. In: 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, pp. 1–4 (2016)

  33. He, Y.; Tian, W.: A broadband dual-polarized base station antenna element for European Digital Dividend, CDMA800 and GSM900 applications. In: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, pp. 659–663 (2017)

  34. Roshna, T.K.; Deepak, U.; Mohanan, P.: Compact UWB MIMO antenna for tridirectional pattern diversity characteristics. IET Microw. Antennas Propag. 11(14), 2059–2206 (2017)

    Article  Google Scholar 

  35. Sharma, Y.; Sarkar, D.; Saurav, K.; Srivastava, K.V.: Three-element MIMO antenna system with pattern and polarization diversity for WLAN applications. IEEE Antennas Wirel. Propag. Lett. 16, 1163–1166 (2017)

    Article  Google Scholar 

  36. Guo, Y.Q.; Pan, Y.M.; Zheng, S.Y.: Design of series-fed, single-layer, and wideband millimeter-wave microstrip arrays. IEEE Trans. Antennas Propag. 68(10), 7017–7026 (2020)

    Article  Google Scholar 

  37. Kamal, S.; Mohammed, A.S.B.; Bin Ain, M.F.; Ullah, U.; Hussin, R.; Ahmad, Z.A.; Othman, M.; Rahman, M.F.A.: A novel negative meander line design of microstrip antenna for 28 GHz mmWave wireless communications. Radioengineering 29(3), 479 (2020)

    Article  Google Scholar 

  38. Rodriguez-Cano, R.; Zhang, S.; Zhao, K.; Pedersen, G.F.: mm-Wave beam-steerable endfire array embedded in a slotted metal-frame LTE antenna. IEEE Trans. Antennas Propag. 68(5), 3685–3694 (2020)

    Article  Google Scholar 

  39. Alzidani, M.; Afifi, I.; Asaadi, M.; Sebak, A.: Ultra-wideband differential fed hybrid antenna with high-cross polarization discrimination for millimeter wave applications. IEEE Access 8, 80673–80683 (2020)

    Article  Google Scholar 

  40. Hayashida, Y., et al.: 28GHz 4⨯4 one-sided directional slot array antenna for 5G application. In: 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hiroshima, Japan, pp. 142–144 (2020)

  41. Li, X.; Ye, M.; Chu, Q.: Novel high gain printed log-periodic dipole antenna. In: 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, pp. 1647–1648 (2016)

  42. Khripkov, A.; Ilvonen, Z.; Milosavljevic, J.: 5G millimeter wave broadside-endfire antenna array. In: 2020 International Workshop on Antenna Technology (iWAT), Bucharest, Romania, pp. 1–4 (2020)

  43. Stanley, M.; Huang, Y.; Wang, H.; Zhou, H.; Alieldin, A.; Joseph, S.: A capacitive coupled patch antenna array with high gain and wide coverage for 5G smartphone applications. IEEE Access 6, 41942–41954 (2018)

    Article  Google Scholar 

  44. Ansal, K.A.; Shanmuganantham, T.: A novel CB ACS-fed dual band antenna with truncated ground plane for 2.4/5GHz WLAN application. AEU Int. J. Electron. Commun. 69(10), 1506–1513 (2015)

    Article  Google Scholar 

  45. Hu, W.; Wu, J.; Zheng, S.; Ren, J.: Compact ACS-fed printed antenna using dual edge resonators for tri-band operation. IEEE Antennas Wirel. Propag. Lett. 15, 207–210 (2016)

    Article  Google Scholar 

  46. Magray, M.I.; Karthikeya, G.S.; Muzaffar, K.; Koul, S.K.: Electrically small ACS-fed flipped MIMO antenna for USB portable applications. Prog. Electromag. Res. C 95, 141–152 (2019)

    Article  Google Scholar 

  47. Ibrahim, A.A.; Abdalla, M.A.; Hu, Z.: Compact ACS-fed CRLH MIMO antenna for wireless applications. IET Microw. Antennas Propag. 12(6), 1021–1025 (2018)

    Article  Google Scholar 

  48. Masoodi, I.S.; Ishteyaq, I.; Muzaffar, K.; Magray, M.I.: Low cost substrate based compact antennas for 4G/5G side-edge panel smartphone applications. Prog. Electromag. Res. Lett. 91, 145–152 (2020)

    Article  Google Scholar 

  49. Magray, M.I.; Karthikeya, G.S.; Muzaffar, K.; Koul, S.K.; Moon, A.H.: Wideband asymmetric coplanar strip fed antennas with pattern diversity for mmWave 5G base stations. IEEE Access 8, 77482–77489 (2020)

    Article  Google Scholar 

  50. Wu, Q.; Hirokawa, J.; Yin, J.; Yu, C.; Wang, H.; Hong, W.: Millimeter-wave multibeam endfire dual-circularly polarized antenna array for 5G wireless applications. IEEE Trans. Antennas Propag. 66(9), 4930–4935 (2018)

    Article  Google Scholar 

  51. Li, X.; Xiao, J.; Qi, Z.; Zhu, H.: Broadband and high-gain siw-fed antenna array for 5G applications. IEEE Access 6, 56282–56289 (2018)

    Article  Google Scholar 

  52. Li, A.; Luk, K.: Single-layer wideband end-fire dual-polarized antenna array for device-to-device communication in 5G wireless systems. IEEE Trans. Veh. Technol. 69(5), 5142–5150 (2020)

    Article  Google Scholar 

  53. Bozzi, M.; Pasian, M.; Perregrini, L.; Wu, K.: On the losses in substrate integrated waveguides. In: 2007 European Microwave Conference, pp. 384–387 (2007)

  54. Park, J.; Seong, H.; Whang, Y.N.; Hong, W.: Energy-efficient 5G phased arrays incorporating vertically polarized endfire planar folded slot antenna for mmWave mobile terminals. IEEE Trans. Antennas Propag. 68(1), 230–241 (2020)

    Article  Google Scholar 

  55. Cao, Y.; Cai, Y.; Wang, L.; Qian, Z.; Zhu, L.: A review of substrate integrated waveguide end-fire antennas. IEEE Access 6, 66243–66253 (2018)

    Article  Google Scholar 

  56. Liu, P.; Zhu, X.; Jiang, Z.H.; Zhang, Y.; Tang, H.; Hong, W.: A compact single-layer Q-band tapered slot antenna array with phase-shifting inductive windows for endfire patterns. IEEE Trans. Antennas Propag. 67(1), 169–178 (2019)

    Article  Google Scholar 

  57. Khajeim, M.F.; Moradi, G.; Shirazi, R.S.; Zhang, S.; Pedersen, G.F.: Wideband vertically polarized antenna with endfire radiation for 5G mobile phone applications. IEEE Antennas Wirel. Propag. Lett. 19(11), 1948–1952 (2020)

    Article  Google Scholar 

  58. Cheng, Y.; Dong, Y.: Wideband circularly polarized planar antenna array for 5G millimeter-wave applications. IEEE Trans. Antennas Propag. 69(5), 2615–2627 (2021)

    Article  Google Scholar 

  59. Feng, Xu.; Ke, Wu.: Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Trans. Microw. Theory Tech. 53(1), 66–73 (2005)

    Article  Google Scholar 

  60. Zhang, L., et al.: Wideband high-efficiency circularly polarized SIW-Fed S-dipole array for millimeter-wave applications. IEEE Trans. Antennas Propag. 68(3), 2422–2427 (2020)

    Article  Google Scholar 

  61. Feng, B.; He, X.; Cheng, J.; Sim, C.: Dual-wideband dual-polarized metasurface antenna array for the 5G millimeter wave communications based on characteristic mode theory. IEEE Access 8, 21589–21601 (2020)

    Article  Google Scholar 

  62. Li, A.; Luk, K.; Li, Y.: A dual linearly polarized end-fire antenna array for the 5G applications. IEEE Access 6, 78276–78285 (2018)

    Article  Google Scholar 

  63. Civerolo, M.; Arakaki, D.: Aperture coupled patch antenna design methods. In: 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 876–879 (2011)

  64. HFSS, Ansoft Corporation: User's Guide, Version 10-High Frequency Structure Simulator, Ansoft Corporation, Pittsburgh, pp. 220–238 (2005)

  65. Pozar, D.M.: A microstrip antenna aperture coupled to a microstrip line. Electron. Lett. 21, 49–50 (1985)

    Article  Google Scholar 

  66. Cui, X.; Yang, F.; Gao, M.; Zhou, L.; Liang, Z.; Yan, F.: A wideband magnetoelectric dipole antenna with microstrip line aperture-coupled excitation. IEEE Trans. Antennas Propag. 1–1 (2017)

  67. Pozar, D.M.: A Review of Aperture Coupled Microstrip Antennas: History, Operation, Development, and Applications, p. 1–9. University of Massachusetts, Amherst (1996)

    Google Scholar 

  68. Aijaz, Z.; Shrivastava, S.C.: Coupling effects of aperture coupled microstrip antenna. Int. J. Eng. Trends Technol. 20, 11 (2011)

    Google Scholar 

  69. Kanamaluru, S.; Li, M.Y.; Chang, K.: Analysis and design of aperture-coupled microstrip patch antennas and arrays fed by dielectric image line. IEEE Trans. Antennas Propag. 44(7), 964–974 (1996)

    Article  Google Scholar 

  70. Targonski, S.D.; Pozar, D.M.: Design of wideband circularly polarized aperture-coupled microstrip antennas. IEEE Trans. Antennas Propag. 41(2), 214–220 (1993)

    Article  Google Scholar 

  71. Singh, I.; Tripathi, V.S.: Micro strip patch antenna and its applications: a survey. Int. J. Comp. Tech. Appl 2(5), 1595–1599 (2011)

    Google Scholar 

  72. Rahim, M.K.A.; Low, Z.W.; Soh, P.J.; Asrokin, A.; Jamaluddin, M.H.; Masri, T.: Aperture coupled microstrip antenna with different feed sizes and aperture positions. In: 2006 International RF and Microwave Conference, pp. 31–35. IEEE (2006)

  73. Croq, F.; Papiernik, A.: Large bandwidth aperture-coupled microstrip antenna. Electron. Lett. 26(16), 1293–1294 (1990)

    Article  Google Scholar 

  74. Zhao, C.; Wang, C.-F.: Characteristic mode design of wide band circularly polarized patch antenna consisting of H-shaped unit cells. IEEE Access 6, 25292–25299 (2018)

    Article  Google Scholar 

  75. Diaz, J.D.; Salazar-Cerreno, J.L.; Ortiz, J.A.; Aboserwal, N.A.; Lebrón, R.M.; Fulton, C.; Palmer, R.D.: A cross-stacked radiating antenna with enhanced scanning performance for digital beamforming multifunction phased-array radars. IEEE Trans. Antennas Propag. 66(10), 5258–5267 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the “Center for mmWave Smart Radar Systems and Technologies” through the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan, in part by MOST, Taiwan, under Grant MOST 109-2634-F-009-030 and in part by “Qualcomm Taiwan Research Program, 2020 (NCTU/NYCU)” under Grant NAT435535 SOW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Idrees Magray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeya, G.S., Magray, M.I., Zebiri, C. et al. Implementational Aspects of Various Feeding Techniques for mmWave 5G Antennas. Arab J Sci Eng 47, 14731–14744 (2022). https://doi.org/10.1007/s13369-022-06953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06953-9

Keywords

Navigation