Skip to main content
Log in

Adaptive Hierarchical Fractional-Order Sliding Mode Control of an Inverted Pendulum–Cart System

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper designs an adaptive fractional-order sliding mode controller for an inverted pendulum–cart system. The input force is determined to stabilize the system and adjust the cart position and the pendulum angle to zero. A hierarchical sliding mode control approach with novel fractional-order sliding surfaces, including a fractional-order integral term, an ordinary derivative term, and a proportional term, is chosen to attain this purpose. The control signal is determined to ensure the sliding condition. In order to improve the robustness of the proposed controller against uncertainties in the cart friction coefficient and the pendulum’s viscous friction, the controller parameters are adapted according to an appropriate adaptation rule. The adaptation rule is attained using an appropriate Lyapunov-based approach. Numerical simulations confirm the feasibility and efficiency of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Boubaker, O.; Lathrop, R.C.: The inverted pendulum benchmark in nonlinear control theory: a survey. Int. J. Adv. Rob. Syst. 10, 1–9 (2013)

    Google Scholar 

  2. Roose, A.I.; Yahya, S.; Al-Rizzo, H.: Fuzzy-logic control of an inverted pendulum on a cart. Comput. Electr. Eng. 61, 31–47 (2017)

    Article  Google Scholar 

  3. El-Bardini, M.; El-Negar, A.M.: Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system. ISA Trans. 53, 732–743 (2014)

    Article  Google Scholar 

  4. Lee, J.; Mukherjee, R.; Khalil, H.K.: Output feedback stabilization of inverted pendulum on a cart in the presence of uncertainties. Automatica 54, 146–157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Prasad, L.B.; Tyagi, B.; Gupta, H.O.: Optimal control of nonlinear inverted pendulum system using PID controller and LQR: performance analysis without and with disturbance input. Int. J. Autom. Comput. 11, 661–670 (2014)

    Article  Google Scholar 

  6. Patra, A.K.; Biswal, S.S.; Rout, P.K.: Backstepping linear quadratic gaussian controller design for balancing an inverted pendulum. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1592716

    Article  Google Scholar 

  7. Adıgüzel, F.; Yalçın, Y.: Discrete-time backstepping control with nonlinear adaptive disturbance attenuation for the inverted-pendulum system. Trans. Inst. Meas. Control. 43, 1068–1076 (2021)

    Article  Google Scholar 

  8. Franco, E.; Astolfi, A.; Baena, F.R.Y.: Robust balancing control of flexible inverted-pendulum systems. Mech. Mach. Theory 130, 539–551 (2018)

    Article  Google Scholar 

  9. Hanwate, S.; Hote, Y.V.; Budhraja, A.: Design and implementation of adaptive control logic for cart-inverted pendulum system. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 233, 164–178 (2019)

    Google Scholar 

  10. Rubio, J.D.J.; Lughofer, E.; Pieper, J.; Cruz, P.; Martinez, D.I.; Ochoa, G.; Islas, M.A.; Garcia, E.: Adapting H-infinity controller for the desired reference tracking of the sphere position in the maglev process. Inf. Sci. 569, 669–686 (2021)

    Article  MathSciNet  Google Scholar 

  11. Martinez, D.I.; Rubio, J.D.J.; Garcia, V.; Vargas, T.M.; Islas, M.A.; Pacheco, J.; Gutierrez, G.J.; Meda-Campaña, J.A.; Mujica-Vargas, D.; Aguilar-Ibañez, C.: Transformed structural properties method to determine the controllability and observability of robots. Appl. Sci. 11, 3082 (2021)

    Article  Google Scholar 

  12. Aguilar-Ibañez, C.; Moreno-Valenzuela, J.; Garcia-Alarcon, O.; Martinez-Lopez, M.; Acosta, J.A.; Suarez-Castanon, M.S.: PI-Type controllers and Σ-Δ modulation for saturated DC-DC buck power converters. IEEE Access 9, 20346–20357 (2021)

    Article  Google Scholar 

  13. Soriano, L.A.; Zamora, E.; Vazquez-Nicolas, J.M.; Hernández, G.; Barraza Madrigal, J.A.; Balderas, D.: PD control compensation based on a cascade neural network applied to a robot manipulator. Front. Neurorobot. 14, 577749 (2020)

    Article  Google Scholar 

  14. Martinez, D.I.; Rubio, J.D.J.; Aguilar, A.; Pacheco, J.; Gutierrez, G.J.; Garcia, V.; Vargas, T.M.; Ochoa, G.; Cruz, D.R.; Juarez, C.F.: Stabilization of two electricity generators. Complexity 2020, 1–13 (2020)

    Article  Google Scholar 

  15. Silva-Ortigoza, R.; Hernanzdez-Marquez, E.; Roldan-Caballero, A.; Tavera-Mosqueda, S.; Marciano-Melchor, M.; Garcia-Sanchez, J.R.; Hernandez-Guzman, V.M.; Silva-Ortigoza, G.: Sensorless tracking control for a full-bridge Buck inverter-DC motor system: passivity and flatness-based design. IEEE Access 9, 132191–132204 (2021)

    Article  Google Scholar 

  16. Irfan, S.; Mehmood, A.; Razzaq, M.T.; Iqbal, J.: Advanced sliding mode control techniques for inverted pendulum: modelling and simulation. Eng. Sci. Technol. Int. J. 21, 753–759 (2018)

    Google Scholar 

  17. Riachy, S.; Orlov, Y.; Floquet, T.; Santiesteban, R.; Richard, J.P.: Second-order sliding mode control of underactuated mechanical systems I: local stabilization with application to an inverted pendulum. Int. J. Robust Nonlinear Control 18, 529–543 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Adhikary, N.; Mahanta, C.: Integral backstepping sliding mode control for underactuated systems: swing-up and stabilization of the cart–pendulum system. ISA Trans. 52, 870–880 (2013)

    Article  Google Scholar 

  19. Khan, Q.; Akmeliawati, R.; Bhatti, A.I.; Khan, M.A.: Robust stabilization of underactuated nonlinear systems: a fast terminal sliding mode approach. ISA Trans. 66, 241–248 (2017)

    Article  Google Scholar 

  20. Mahmoodabadi, M.J.; Mostaghim, S.A.; Bagheri, A.; Nariman-Zadeh, N.: Pareto optimal design of the decoupled sliding mode controller for an inverted pendulum system and its stability simulation via Java programming. Math. Comput. Model. 57, 1070–1082 (2013)

    Article  MathSciNet  Google Scholar 

  21. Maafi, R.A.; Haghighi, S.E.; Mahmoodabadi, M.: J: Pareto optimal design of a fuzzy adaptive hierarchical sliding-mode controller for an X-Z inverted pendulum system. IETE J. Res. (2021). https://doi.org/10.1080/03772063.2021.1910578

    Article  Google Scholar 

  22. Bayram, A.; Kara, F.: Design and control of spatial inverted pendulum with two degrees of freedom. J. Braz. Soc. Mech. Sci. Eng. 42, 501 (2020)

    Article  Google Scholar 

  23. Ghabi, J.; Dhouibi, H.: Discrete time sliding mode controller using a disturbance compensator for nonlinear uncertain systems. Int. J. Control Autom. Syst. 16, 1156–1164 (2018)

    Article  Google Scholar 

  24. Huang, X.; Gao, H.; Ralescu, A.L.; Huang, H.: Adaptive hierarchical sliding mode control based on fuzzy neural network for an underactuated system. Adv. Mech. Eng. 10, 1–20 (2018)

    Article  Google Scholar 

  25. Al-Araji, A.S.: An adaptive swing-up sliding mode controller design for a real inverted pendulum system based on culture-bees algorithm. Eur. J. Control. 45, 45–56 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mobayen, S.: Adaptive global sliding mode control of underactuated systems using a super-twisting scheme: an experimental study. J. Vib. Control 25, 2215–2224 (2019)

    Article  MathSciNet  Google Scholar 

  27. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  28. Bettayeb, M.; Boussalem, C.; Mansouri, R.; Al-Saggaf, U.M.: Stabilization of an inverted pendulum-cart system by fractional PI-state feedback. ISA Trans. 53, 508–516 (2014)

    Article  Google Scholar 

  29. Shalaby, R.; El-Hossainy, M.; Abo-Zalam, B.: Fractional order modeling and control for under-actuated inverted pendulum. Commun. Nonlinear Sci. Numer. Simul. 74, 97–121 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Monda, R.; Chakraborty, A.; Dey, J.; Halder, S.: Optimal fractional order PIλDμ controller for stabilization of cart-inverted pendulum system: experimental results. Asian J. Control 22, 1345–1359 (2020)

    Article  MathSciNet  Google Scholar 

  31. Mondal, R.; Dey, J.: Performance analysis and implementation of fractional order 2-DOF control on cart–inverted pendulum system. IEEE Trans. Ind. Appl. 56, 7055–7066 (2020)

    Article  Google Scholar 

  32. Zhang, B.T.; Pi, Y.G.; Luo, Y.: Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor. ISA Trans. 51, 649–656 (2012)

    Article  Google Scholar 

  33. Zaihidee, F.M.; Mekhilef, S.; Mubin, M.: Application of fractional order sliding mode control for speed control of permanent magnet synchronous motor. IEEE Access 7, 101765–101774 (2019)

    Article  Google Scholar 

  34. Eray, O.; Tokat, S.: The design of a fractional-order sliding mode controller with a time-varying sliding surface. Trans. Inst. Meas. Control. 42, 3196–3215 (2020)

    Article  Google Scholar 

  35. Naderloasli, A.; Tabatabaei, M.: Stabilization of the two-axis gimbal system based on an adaptive fractional-order sliding-mode controller. IETE J. Res. 63, 124–133 (2017)

    Article  Google Scholar 

  36. Mehri, E.; Tabatabaei, M.: Control of quadruple tank process using an adaptive fractional-order sliding mode controller. J. Control Autom. Electr. Syst. 32, 605–614 (2021)

    Article  Google Scholar 

  37. Fei, J.; Lu, C.: Adaptive fractional order sliding mode controller with neural estimator. J. Franklin Inst. 535, 2369–2391 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vahdanipour, M.; Khodabandeh, M.: Adaptive fractional order sliding mode control for a quadrotor with a varying load. Aerosp. Sci. Technol. 86, 737–747 (2019)

    Article  Google Scholar 

  39. Ahmed, S.; Wang, H.; Tian, Y.: Robust adaptive fractional-order terminal sliding mode control for lower-limb exoskeleton. Asian J. Control 21, 473–482 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shi, X.; Cheng, Y.; Yin, C.; Zhong, S.; Huang, X.; Chen, K.; Qiu, G.: Adaptive fractional-order SMC controller design for unmanned quadrotor helicopter under actuator fault and disturbances. IEEE Access 8, 103792–103802 (2020)

    Article  Google Scholar 

  41. Hosseini, S.H.; Tabatabaei, M.: IPMSM velocity and current control using MTPA based adaptive fractional order sliding mode controller. Eng. Sci. Technol. Int. J. 20, 896–908 (2017)

    Google Scholar 

  42. Abdelhamid, D.; Toufik, B.; Vinagre, B.M.: Optimal fractional-order sliding mode controller (OFSMC) design for a class of fractional-order nonlinear SIMO systems using PSO algorithm J. . Control Eng. Appl. Inf. 18, 14–25 (2016)

    Google Scholar 

  43. Zakeri, E.; Moezi, S.A.; Eghtesad, M.: Optimal interval type-2 fuzzy fractional order super twisting algorithm: a second order sliding mode controller for fully-actuated and under-actuated nonlinear systems. ISA Trans. 85, 13–32 (2019)

    Article  Google Scholar 

  44. Zangeneh-Madar, M.R.; Mazinan, A.H.: Control of the inverted pendulum system: a Smith fractional-order predictive model representation. Sādhanā 45, 105 (2020)

    Article  MathSciNet  Google Scholar 

  45. Valério, D.; Da Costa, J.S.: Ninteger: a non-integer control toolbox for Matlab. In: Proceedings of the 1st IFAC Workshop on Fractional Differentiation and its Applications, Bordeaux, France (2004)

  46. Slotine, J.J.E.; Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  47. Chakaraborty, A.; Dey, J.: Periodic control for the cart pendulum system with structured uncertainty. Turk. J. Electr. Eng. Comput. Sci. 25, 140–154 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Tabatabaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Appendix

Appendix

See Table 4.

Table 4 List of variables and their description

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafary Fesharaki, A., Tabatabaei, M. Adaptive Hierarchical Fractional-Order Sliding Mode Control of an Inverted Pendulum–Cart System. Arab J Sci Eng 47, 13927–13942 (2022). https://doi.org/10.1007/s13369-022-06613-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06613-y

Keywords

Navigation