Skip to main content
Log in

Discrete Time Sliding Mode Controller Using a Disturbance Compensator for Nonlinear Uncertain Systems

  • Regular Papers
  • Control Theory and Applications
  • Published:
International Journal of Control, Automation and Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a new sliding mode control for discrete time nonlinear uncertain systems. The uncertainties include both parametric uncertainties in the state model and external disturbances. To recover the lost invariance and robustness properties of discrete sliding mode control, we develop a disturbance estimation scheme to compensate the system uncertainties without affecting the control law. This control approach ensures the stability of the closed loop system as well as chattering reduction. The performance of the proposed controller is applied to control the motion of a cart-inverted pendulum used as a typical benchmark of nonlinear systems. The stabilization problem of the inverted pendulum system is to design a controller to keep the pendulum in its unstable equilibrium point in the presence of disturbances and parameters variation. The simulation result shows the effectiveness of the control design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Åström and K. Furuta, “Swinging up a pendulum by energy control,” Automatica, vol. 36, no. 2, pp. 287–295, 2000. [click]

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Muskinja and B. Tovornik, “Swinging up and stabilization of a real inverted pendulum,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 631–639, 2006. [click]

    Article  Google Scholar 

  3. B. A. Elsayed, M. A. Hassan, and S. Mekhilef, “Fuzzy swinging-up with sliding mode control for third order cartinverted pendulum system,” International Journal of Control, Automation, and Systems, vol. 13, no. 1, pp. 1–11, 2015.

    Article  Google Scholar 

  4. V. I. Utkin and H. C. Chang, “Sliding mode control on electro-mechanical systems,” Mathematical Problems in Engineering, vol. 8, no. 4–5, pp. 451–473, 2002. [click]

    Article  MathSciNet  MATH  Google Scholar 

  5. K. D. Young, V. I. Utkin, and Ö. Özgüner, “A control engineer’s guide to sliding mode control,” IEEE Transactions on Control System Technology, vol. 7, no. 3, pp. 328–342, 1999. [click]

    Article  Google Scholar 

  6. C. Edwards and S. K. Spurgeon, Sliding Mode Control: Theory and Applications, Taylor & Francis, Ltd, 1998.

    MATH  Google Scholar 

  7. M. Rubagotti, A. Estrada, F. Castanos, A. Ferrara, and L. Fridman, “Integral sliding mode control for nonlinear systems with matched and unmatched perturbations,” IEEE Transactions on Automatic Control, vol. 56, no. 11, pp. 2699–2704, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Liu, S. Vazquez, L. Wu, A. Marquez, H. Gao, and L. G Franquelo, “Extended state observer-based sliding-mode control for three-phase power converters,” IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 22–31, 2017. [click]

    Article  Google Scholar 

  9. J. Liu, W. Luo, X. Yang, and L. Wu, “Robust model-based fault diagnosis for PEM fuel cell air-feed system,” IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 3261–3270, 2016. [click]

    Article  Google Scholar 

  10. W. Gao and J. Hung, “Variable structure control of nonlinear systems: a new approach,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 45–55, 1993. [click]

    Article  Google Scholar 

  11. J. J. E. Slotine, “Sliding controller design for non-linear systems,” International Journal of Control, vol. 40, no. 2, pp. 421–434, 1984. [click]

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Wheeler, C. Su, and Y. Stepanenko, “A sliding mode controller with improved adaption laws for the upper bounds on the norm of uncertainties,” Automatica, vol. 34, no. 12, pp. 1657–1661, 1998. [click]

    Article  MATH  Google Scholar 

  13. H. Sira-Ramírez, “On the dynamical sliding mode control of nonlinear systems,” International Journal of Control, vol. 57, no. 5, pp. 1039–1061, 1993. [click]

    Article  MathSciNet  MATH  Google Scholar 

  14. A. G. Bondarev, S. A. Bondarev, N. Y. Kostylyeva, and V. I. Utkin, “Sliding modes in systems with asymptotic observers,” Automation and Remote Control, vol. 46, no. 5, pp. 679–684, 1985.

    MATH  Google Scholar 

  15. A. Levant, “Higher-order sliding modes, differentiation and output-feedback control,” International Journal of Control, vol. 76, no. 9, pp. 924–941, 2003. [click]

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Bartolini, A. Pisano, E. Punta, and E. Usai, “A survey of applications of second order sliding mode control to mechanical systems,” International Journal of Control, vol. 76, no. 9–10, pp. 875–892, 2003. [click]

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Ding and S. Li, “Second-order sliding mode controller design subject to mismatched term,” Automatica, vol. 77, pp. 388–392, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. P. Bhat and D. S. Bernstein, “Continuous finite-time stabilization of the translational and rotational double integrators,” IEEE Transactions on Automatic Control, vol. 43, no. 5, pp. 678–682, 1998. [click]

    Article  MathSciNet  MATH  Google Scholar 

  19. S. P. Bhat and D. S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM Journal on Control and Optimization, vol. 38, no. 3, pp. 751–766, 2000. [click]

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Polyakov and L. Fridman, “Stability notions and Lyapunov functions for sliding mode control systems,” Journal of the Franklin Institute, vol. 351, no. 4, pp. 1831–1865, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Huang and Z. Xiang, “Finite-time stabilization of switched stochastic nonlinear systems with mixed odd and even powers,” Automatica, vol. 73, pp. 130–137, November 2016.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Huang and Z. Xiang, “Finite-time stabilization of a class of switched stochastic nonlinear systems under arbitrary switching,” International Journal of Robust and Nonlinear Control, vol. 26, no. 10, pp. 2136–2152, July 2016. [click]

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Mao, S. Huang and Z. Xiang, “Adaptive practical finitetime stabilization for switched nonlinear systems in pure feedback form,” Journal of the Franklin Institute, vol. 354, no. 10, pp. 3971–3994, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  24. O. Kaynak and A. Denker, “Discrete-time sliding mode control in the presence of system uncertainty,” International Journal of Control, vol. 57, no. 5, pp. 1177–1189, 1993. [click]

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Bartoszewicz, “Discrete-Time Quasi-Sliding-Mode Control Strategies,” IEEE Transactions on Industrial Electronics, vol. 45, no. 4, pp. 633–637, 1998. [click]

    Article  Google Scholar 

  26. Y. Lin, Y. Shi, and R. Burton, “Modeling and robust discrete-time sliding-mode control design for a fluid power electrohydraulic actuator (EHA) system,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 1, pp. 1–10, 2013.

    Article  Google Scholar 

  27. H. Ma, J. Wu, and Z. Xiong, “Discrete-time sliding-mode control with improved quasi-sliding-mode domain,” IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6292–6304, 2016. [click]

    Article  Google Scholar 

  28. A. Z. Sarpturk, S. Y. Istefanopulos, and O. Kaynak, “On the stability of discrete-time sliding mode control systems,” IEEE Transactions on Automatic Control, vol. 32, no. 10, pp. 930–937, 1987.

    Article  MATH  Google Scholar 

  29. D. Milosavljevic, “General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems,” Automation and Remote Control, vol. 46, no. 3, pp. 307–314, 1985.

    MATH  Google Scholar 

  30. K. Furuta, “Sliding mode control of a discrete system,” System and Control Letters, vol. 14, no. 2, pp. 145–152, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. C. Cheng, M. H. Lin, and J. M. Hsiao, “Sliding mode controller design for linear discrete-time systems with matching perturbations,” Automatica, vol. 36, no. 8, pp. 1205–1211, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Romdhane, K. Dehri, and A. S. Nouri, “Stability analysis of discrete input output second order sliding mode control,” International Journal of Modelling, Identification and control, vol. 22, no. 2, pp. 159–169, 2014.

    Article  MATH  Google Scholar 

  33. A. Bartoszewicz and P. Le´sniewski, “Reaching law approach to the sliding mode control of periodic review inventory systems,” IEEE Transactions on Automation Science and Engineering, vol. 11, no. 3, pp. 810–817, 2014. [click]

    Article  Google Scholar 

  34. S. Qu, X. Xia, and J. Zhang, “Dynamics of discrete-time sliding mode control under uncertain systems with a disturbance compensator,” IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3502–3510, 2014. [click]

    Article  Google Scholar 

  35. K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice Hall, New Jersey, 1996.

    MATH  Google Scholar 

  36. W. Gao, Y. Wang, and A. Homaifa, “Discrete-time variable structure control systems,” IEEE Transactions on Industrial Electronics, vol. 42, no. 2, pp. 117–122, 1995. [click]

    Article  Google Scholar 

  37. J. Kim, S. Oh, D. Cho, and J. Hedrick, “Robust discretetime variable structure control methods,” Journal of Dynamic Systems, Measurement, and Control, vol. 122, no. 4, pp. 766–775, 2000. [click]

    Article  Google Scholar 

  38. E. A. Misawa, “Discrete-time sliding mode control: the linear case,” Journal of Dynamic Systems, Measurement, and Control, vol. 119, no. 4, pp. 819–821, 1997. [click]

    Article  MATH  Google Scholar 

  39. J. H. Williams Jr., Fundamentals of Applied Dynamics, John Wiley & Sons, New York, 1996.

    Google Scholar 

  40. J. Zhao and M. W. Spong, “Hybrid control for global stabilization of the cart pendulum system,” Automatica, vol. 37, no. 12, pp. 1941–1951, 2001. [click]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalel Ghabi.

Additional information

Recommended by Associate Editor Sung Jin Yoo under the direction of Editor PooGyeon Park. The authors appreciate the Associate Editor and anonymous reviewers for their constructive comments on the basis of which the presentation of this paper has been greatly improved.

Jalel Ghabi received the Master degree in Automatic Control and Industrial Computing from University of Sfax in 2003. In 2009, he obtained his Ph.D. degree in Automatic from University of Monstir. He is currently an associate professor at University of Kairouan, Tunisia. His research interests include Sliding mode control, Robust predictive control, Chaos control.

Hedi Dhouibi received the Master degree in Industrial Maintenance from University of Tunisa in 1999. In 2005, he obtained his Ph.D. degree in Automatic Control from the Institute of Sciences and Technologies of Lille, France. He is currently a professor at University of Kairouan. His research interests include Intelligent control, Diagnostics and fault detection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghabi, J., Dhouibi, H. Discrete Time Sliding Mode Controller Using a Disturbance Compensator for Nonlinear Uncertain Systems. Int. J. Control Autom. Syst. 16, 1156–1164 (2018). https://doi.org/10.1007/s12555-017-0185-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12555-017-0185-0

Keywords

Navigation