Skip to main content

Advertisement

Log in

Compressive Strength and Wetting–Drying Cycles of Al-Hofuf "Hamrah" Soil Stabilized with Cement and Lime

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The practice of designing load-bearing walls with stabilized earth-based material is currently increasing in most developed countries. Potentialities of earth-based materials have room for more exploration, investigation, and promotion among building industry stakeholders globally. This research aims to analyze the compressive strength and durability of “Hamrah” Soil to assess its fitness in construction. Such a study is intended to get international and local (Saudi Arabia) construction practitioners’ confidence about soil usage in the construction industry. To achieve this goal, sufficient soil material was procured from the Al-Hofuf region in eastern Saudi Arabia. Several geotechnical experiments were carried out to characterize and identify Hamrah Soil properties. The soil samples were classified in adherence to both the Unified Soil Classification System (USCS) and the American Association of State Highway and Transportation Officials (AASHTO) system. Stabilizing agents (cement and lime) were added at different percentages (0, 2.5, 5, 7.5, 10, 15% of the dry soil weight) to enhance their structural properties. Based on the acceptance criteria of 2 MPa strength, more than 5% cement maximized the stabilized rammed earth (SRE) sample strength more than 2 MPa (up to 6.3 MPa at 15% cement content), whereas 10% lime reached only1.46 MPa, which proved the efficiency of cement stabilization over lime. Micro-characterization techniques utilizing XRD, SEM, and durability tests also lent credence to the effectiveness of cement in the stabilization regime, giving more fibrous formations and a reduction in weight loss below the acceptable limits compared with the case of lime stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Abd EI-Aziz, M.A.; Abo-Hashema, M.A.: Measured effects on engineering properties of clayey subgrade using lime-homra stabiliser. Int. J. Pavem. Eng. 14(4), 321–332 (2013)

    Article  Google Scholar 

  2. ACI Materials Journal.: State-of-the-art report on soil cement. ACI Commit. 230(87), 4 (1990)

  3. Ahmed, H.R.: Characterization and stabilization of Eastern Saudi Marls. MSc in Civil Engineering thesis. College of Graduate Studies, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia (1995)

  4. Ai-Azzo, S.I.: Treatment of expansive clayey soil in AL-Wahda District at Mosul City with crushed lime stone. Iraqi J. Earth Sci. 9(2), 1–10 (2009)

    Google Scholar 

  5. Al-Rawas, A.A.: Characterisation of incinerator ash treated expansive soils. Proc. ICE Ground Improv. 8(3), 127–135 (2004)

    Article  Google Scholar 

  6. Al-Swaidani, A.; Hammoud, I.; Meziab, A.: Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. J. Rock Mech. Geotech. Eng. 8(5), 714–725 (2016)

    Article  Google Scholar 

  7. Amadi, A.A.; Lubem, S.: Assessing stabilization effectiveness of combined cement kiln dust and quarry fines on pavement subgrades dominated by black cotton soil. Geotech. Geol. Eng. 32(5), 1231–1238 (2014)

    Article  Google Scholar 

  8. Amu, O.O.; Fajobi, A.B.; Oke, B.O.: Effect of eggshell powder on the stabilizing potential of lime on an expansive clay soil. Res. J. Agric. Biol. Sci. 1(1), 80–84 (2005)

    Google Scholar 

  9. Asgari, M.R.; Dezfuli, A.B.; Bayat, M.: Experimental study on stabilization of a low plasticity clayey soil with cement/lime. Arab. J. Geosci. 8(3), 1439–1452 (2015)

    Article  Google Scholar 

  10. Ashango, A.A.; Patra, N.R.: Static and cyclic properties of clay subgrade stabilised with rice husk ash and portland slag cement. Int. J. Pavem. Eng. doi: https://doi.org/10.1080/10298436.2014.893323 (2014)

  11. Askinglot Website.: What does white soil mean? https://askinglot.com/what-does-white-soil-mean, Accessed on 12 Sept 2020 (2020)

  12. Attom, M.; Shatnawi, M.: Stabilisation of clayey soils using hay materials. J. Solid Waste Technol. Manag. 31(2), 84–92 (2005)

    Google Scholar 

  13. Beckham, T. L.; Hopkins, T. C.: Stabilization of an airport subgrade using hydrated lime and fly ash (1997)

  14. Bell, F.G.: Lime stabilization of clay minerals and soils. Eng. Geol. (Amst.) 42(4), 223–237 (1996)

    Article  Google Scholar 

  15. Bello, A.A.; Ige, J.A.; Ayodele, H.: Stabilization of lateritic soil with cassava peels ash. Br. J. Appl. Sci. Technol. 7(6), 642–650 (2015)

    Article  Google Scholar 

  16. Bhasin, N.K.; Goswami, N.K.; Oli, P.; Krishan, N.; Lal, N.B.: A laboratory study on the utilisation of waste materials for the construction of roads in black cotton soil areas. Highway Res. Bull. 36, 1–11 (1988)

    Google Scholar 

  17. Bonavetti, V.; Donza, H.; Menendez, G.; Cabrera, O.; Irassar, E.F.: Limestone filler cement in low w/c concrete: a rational use of energy. Cem. Conc. Res. 33(6), 865–871 (2003)

    Article  Google Scholar 

  18. Celik, E.; Nalbantoglu, Z.: Effects of ground granulated blastfurnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils. Eng. Geol. 163, 20–25 (2013)

    Article  Google Scholar 

  19. Ciancio, D.; Beckett, C.; Carraro, J.: Optimum lime content identification for lime-stabilized rammed earth. Constr. Build. Mater. 53, 59–65 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.077

    Article  Google Scholar 

  20. Dabaieh, M.: Building with rammed earth: a practical experience with Martin Rauch (2014)

  21. Dash, S.K.; Hussain, M.: Lime stabilization of soils: reappraisal. J. Mater. Civil Eng. 24(6), 707–714 (2012)

    Article  Google Scholar 

  22. Divya Krishnan, K.; Janani, V.; Ravichandran, P.T.; Annadurai, R.; Gunturi, M.: Effect of fly ash and phosphogypsum on properties of expansive soils. Int. J. Sci. Eng. Technol. 3(5), 592–596 (2014)

    Google Scholar 

  23. Eberemu, A.O.; Amadi, A.A.; Lawal, M.: The geotechnical properties of black cotton soil treated with crushed glass cullet. Nigerian J. Technol. Res. 7(2), 23–30 (2012)

    Google Scholar 

  24. Edeh, J. E.; Tyav, S. T.; Osinubi, K. J.: Cassava peel ash stabilized lateritc soil as highway pavement material. In: Pavement materials, structures, and performance (pp. 375–382) (2014)

  25. Ene, E.; Okagbue, C.: Some basic geotechnical properties of expansive soil modified using pyroclastic dust. Eng. Geol. 107, 61–65 (2009)

    Article  Google Scholar 

  26. Gadouri, H.; Harichane, K.; Ghrici, M.: Effects of Na2SO4 on the geotechnical properties of clayey soils stabilised with mineral additives. Int. J. Geotech. Eng. 11(5), 500–512 (2017)

    Article  Google Scholar 

  27. Gadouri, H.; Harichane, K.; Ghrici, M.: Effect of calcium sulphate on the geotechnical properties of stabilized clayey soils. Period. Polytech. Civil Eng. 61(2), 256–271 (2017)

    Google Scholar 

  28. Gadouri, H.; Harichane, K.; Ghrici, M.: Effect of sodium sulphate on the shear strength of clayey soils stabilised with additives. Arab. J. Geosci. 10(10), 218 (2017)

    Article  Google Scholar 

  29. Gadouri, H.; Harichane, K.; Ghrici, M.: Assessment of sulphates effect on pH and pozzolanic reactions of soil–lime–natural pozzolana mixtures. Int. J. Pavem. Eng. 20(7), 761–774 (2019)

    Article  Google Scholar 

  30. Gadouri, H.; Harichane, K.; Ghrici, M.: Assessment of sulphates effect on the classification of soil–lime–natural pozzolana mixtures based on the Unified Soil Classification System (USCS). Int. J. Geotech. Eng. 12(3), 293–301 (2018)

    Article  Google Scholar 

  31. Gupta, C.; Sharma, R.K.: Influence of marble dust, fly ash and beach sand on sub-grade characteristics of expansive soils. In: International Conference on Advances in Engineering and Technology-2014(ICAET-2014) Spl. Publication of IOSR Journal of Mechanical and Civil Engineering, pp 13–18 (2014)

  32. Harichane, K.; Ghrici, M.; Kenai, S.; Grine, K.: Use of natural pozzolana and lime for stabilization of cohesive soils. Geotech. Geol. Eng. 29(5), 759–769 (2011)

    Article  Google Scholar 

  33. Harichane, K.; Ghrici, M.; Kenai, S.: Effect of the combination of lime and natural pozzolana on the compaction and strength of soft clayey soils: a preliminary study. Environ. Earth Sci. 66(8), 2197–2205 (2012)

    Article  Google Scholar 

  34. Harichane, K.; Ghrici, M.; Kenai, S.: Stabilization of Algerian clayey soils with natural pozzolana and lime. Period. Polytech. Civil Eng. 62(1), 1–10 (2018)

    Google Scholar 

  35. Hastuty, I. P.; Sembiring, I. S.; Abidin, M. I.: The utilization of volcanic ash and high Rusk ash as material stabilization in clay by unconfined compression test (UCT) and California bearing ratio (CBR). In: IOP Conference Series: Materials Science and Engineering (Vol. 180, No. 1, p. 012141). IOP Publishing (2017)

  36. Havanagi, V.G.; Mathur, S.; Prasad, P.S.; Kamaraj, C.: Feasibility of copper slag–fly ash–soil mix as a road construction material. Transp. Res. Rec. 1989(1), 13–20 (2007)

    Article  Google Scholar 

  37. Hosni, A.A.; Pauzi, N.I.M.; Sharifuddin, A.S.: Geotechnical properties of waste soil from closed construction dumping area in Serdang, Selangor, Malaysia. Elect. J. Geotech. Eng. (EJGE) 2015(20), 17 (2015)

    Google Scholar 

  38. Hossain, K.M.A.; Lachemi, M.; Easa, S.: Stabilized soils for construction applications incorporating natural resources of Papua New Guinea. Resour. Conser. Recycl. 51(4), 711–731 (2007)

    Article  Google Scholar 

  39. Hussain, M.; Al-Khalifah, F.; Khandaker, N.I.: The Jabal Al Qarah caves of the Hofuf area, North-eastern Saudi Arabia: a geological investigation. J. Cave Karst Stud. 68(1), 12–21 (2006)

    Google Scholar 

  40. Ijimdiya, T.S.; Ashimiyu, A.L.; Abubakar, D.K.: Stabilization of black cotton soil using groundnut shell ash. Elect. J. Geotech. Eng. 17, 3645–3652 (2012)

    Google Scholar 

  41. Ishteeaque, E. M.; Said, F. A.: The native architecture of Saudi Arabia: architecture and identity. In: Riyadh Municipality, King Fahd National Library cataloguing-in-publication data, Al-Turath (2008)

  42. Islam, M.S.; Elahi, T.E.; Shahriar, A.R.; Nahar, K.; Hossain, T.R.: Strength and durability characteristics of cement-sand stabilized earth blocks. J. Mater. Civil Eng. Am. Soc. Civil Eng. (ASCE). (2020). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003176

    Article  Google Scholar 

  43. Jackson, R. S.: Chapter five: site selection and climate. principles and applications food science and technology. Wine Science (Third Edition), Elsevier Inc. pp 239–269. Doi: https://doi.org/10.1016/B978-012373646-8.50008-1 (2008)

  44. Kalkan, E.: Utilization of red mud as a stabilization material for the preparation of clay liners. Eng. Geol. 87(3–4), 220–229 (2006)

    Article  Google Scholar 

  45. Kalkan, E.: Influence of silica fume on the desiccation cracks of compacted clayey soils. Appl. Clay Sci. 43(3–4), 296–302 (2009)

    Article  Google Scholar 

  46. Kariyawasam, K.K.G.K.D.; Jayasinghe, C.: Cement stabilized rammed earth as a sustainable construction material. Const. Build. Mater. 105, 519–527 (2016)

    Article  Google Scholar 

  47. Kazemian, S.; Barghchi, M.: Review of soft soils stabilization by grouting and injection methods with different chemical binders. Sci. Res. Essays 7(24), pp. 2104–2111. http://www.academicjournals.org/SRE. doi: https://doi.org/10.5897/SRE11.1186 ISSN 1992–2248 (2012)

  48. Kennedy, T. W.; Smith, R.; Holmgreen, R. J.; Tahmoressi, M.: An evaluation of lime and cement stabilization. Transp. Res. Rec. (1119) (1987)

  49. Kinuthia, J.M.; Wild, S.; Jones, G.I.: Effects of monovalent and divalent metal sulphates on consistency and compaction of lime-stabilized kaolinite. Appl. Clay Sci. 14(1–3), 27–45 (1999)

    Article  Google Scholar 

  50. Kolay, P.K.; Ramesh, K.C.: Reduction of expansive index, swelling and compression behavior of kaolinite and bentonite clay with sand and class C fly ash. Geotech. Geol. Eng. 34(1), 87–101 (2016)

    Article  Google Scholar 

  51. Koyuncu, H.; Guney, Y.; Yilmaz, G.; Koyuncu, S.; Bakis, R.: Utilization of ceramic wastes in the construction sector. Key Eng. Mater. 264–268, 2509–2512 (2004)

    Article  Google Scholar 

  52. Kumar, A.; Walia, B.S.; Bajaj, A.: Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil. J. Mater. Civil Eng. 19(3), 242–248 (2007)

    Article  Google Scholar 

  53. Malhotra, B.R.; John, K.A.: Use of lime-fly ash-soil-aggregate mix as a base course. Indian Highways 14(5), 23–32 (1986)

    Google Scholar 

  54. Malkanthi, S.N.; Balthazaar, N.; Perera, A.A.D.A.J.: Lime stabilization for compressed stabilized earth blocks with reduced clay and silt. Case Stud. Const. Mater. 12: e00326. Doi:https://doi.org/10.1016/j.cscm.2019.e00326 (2020)

  55. Mallela, J.; Quintus, P.E.; Smith, K.L.: Consideration of lime stabilized layers in mechanistic-empirical pavement design. http://www.training.ce (2004)

  56. Maniatidis, V.; Walker, P.: A review of rammed earth construction. DTi Partners in Innovation Project ‘Developing Rammed Earth for UK Housing’. Natural Building Technology Group Department of Architecture and Civil Engineering University of Bath, United Kingdom (2003)

  57. Manikandan, A.T.; Moganraj, M.: Consolidation and rebound characteristics of expansive soil by using lime and bagasse ash. Int. J. Res. Eng. Technol. 3(4), 403–411 (2014)

    Article  Google Scholar 

  58. Martín-Garrido, M.; Martínez-Ramírez, S.; Pérez, G.; Guerrero Bustos, A. M.: Calcium silicate hydrate characterization by spectroscopic techniques (2016)

  59. Mishra, J.; Yadav, R.K.; Singhai, A.K.: Effect of granite dust on index properties of lime stabilized black cotton soil. Int. J. Eng. Res. Sci. Technol. 3(1), 19–23 (2014)

    Google Scholar 

  60. Misra, A.K.; Mathur, R.; Goel, P.; Sood, V.K.: Use of phosphogypsum-an industrial by-product in stabilization of black cotton soils. Highway Res. Bull. 70, 65–75 (2004)

    Google Scholar 

  61. Modarres, A.; Nosoudy, Y.M.: Clay stabilization using coal waste and lime: technical and environmental impacts. Appl. Clay Sci. 116, 281–288 (2015)

    Article  Google Scholar 

  62. Mughieda, O.; Abu-Ashour, J.: Use of dust waste from grain storage facilities for soil stabilization and moisture retention. J. Solid Waste Technol. Manag. 32(1), 18–27 (2006)

    Google Scholar 

  63. Nalbantoglu, Z.; Tawfiq, S.: Evaluation of the effectiveness of olive cake residue as an expansive soil stabilizer. Environ. Geol. 50, 803–807 (2006)

    Article  Google Scholar 

  64. Negi, A. S.; Faizan, M.; Siddharth, D. P.: Soil stabilization using lime 2(2): 448–453 (2013)

  65. Negi, C.; Yadav, R. K.; Singhai, A. K.: Effect of silica fume on engineering properties of black cotton soil. Int. J. Comput. Eng. Res. (IJCER), 83 (2013)

  66. Nyankson, E.; Agyei-Tuffour, B.; Annan, E.; DodooArhin, D.; Yaya, A.; Brefo, L.D.; Okpoti, E.S.; Odai, E.: Characteristics of stabilized shrink-swell deposits using eggshell powder. Glob. J. Eng. Des. Technol. 2(3), 1–7 (2013)

    Google Scholar 

  67. Ogbonnaya, I.; Illoabachie, D.E.: The potential effect of granite dust on the geotechnical properties of abakaliki clays. Contin. J. Earth Sci. 6(1), 23–30 (2011)

    Google Scholar 

  68. Ola, S.A.: The potentials of lime stabilization of lateritic soils. Eng. Geol. 11(4), 305–317 (1977)

    Article  Google Scholar 

  69. Oluremi, J.R.; Osuolale, O.M.; Adeoye, T.T.; Akingbade, A.A.: Strength development in lateritic soil stabilised with coconut shell ash for highway pavement construction. Innov. Syst. Des. Eng. 7(11), 49–56 (2016)

    Google Scholar 

  70. Oriola, F.; Moses, G.: Groundnut shell ash stabilization of black cotton soil. Elect. J. Geotech. Eng. 15, 415–428 (2010)

    Google Scholar 

  71. Osinubi, K.J.; Ijimdiya, T.S.; Nmadu, I.: Lime stabilization of black cotton soil using bagasse ash as admixture. Adv. Mater. Res. 62–64, 3–10 (2009)

    Article  Google Scholar 

  72. Oyekan, G.L.; Meshida, E.A.; Ogundalu, A.O.: Effect of ground polyvinyl waste on the strength characteristics of black cotton clay soil. J. Eng. Manuf. Technol. 1, 1–10 (2013)

    Google Scholar 

  73. Patil, U.; Valdes, J.R.; Evans, T.M.: Swell mitigation with granulated tire rubber. J. Mater. Civil Eng. 23(5), 721–727 (2011)

    Article  Google Scholar 

  74. Peethamparan, S.; Olek, J.; Diamond, S.: Physicochemical behavior of cement kiln dust–treated kaolinite clay. Transp. Res. Rec. 2059(1), 80–88 (2008)

    Article  Google Scholar 

  75. Prusinski, J.R.; Bhattacharja, S.: Effectiveness of Portland cement and lime in stabilizing clay soils. Transp. Res. Rec. 1652(1), 215–227 (1999)

    Article  Google Scholar 

  76. Queensland Government Website: Soil color. https://www.qld.gov.au/environment/land/management/soil/soil-properties/colour, Accessed on 10 Sept 2020 (2015)

  77. Ramesh, H.N.; Krishnaiah, A.J.; Shilpashet, S.: Effect of lime on the index properties of black cotton soil and mine tailings mixtures. IOSR J. Eng. 3(4), 1–7 (2013)

    Article  Google Scholar 

  78. Reddy, B.V.V.; Kumar, P.P.: Cement stabilized rammed earth. Part B: compressive strength and stress-strain characteristics. Mater. Struct. 44, 695–707 (2011). https://doi.org/10.1617/s11527-010-9659-8

    Article  Google Scholar 

  79. Reddy, B.V.V.; Suresh, V.; Rao, K.S.N.: Characteristic compressive strength of cement-stabilized rammed earth. J. Mater. Civil Eng. (2016). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001692

    Article  Google Scholar 

  80. Sabat, A.K.; Das, S.K.: Design of low volume rural roads using lime stabilized expansive soil-quarry dust mixes subgrade. Indian Highways. 23(9), 21–27 (2009)

    Google Scholar 

  81. Sabat, A.K.; Bose, B.: Improvement in geotechnical properties of an expansive soil using fly ash-quarry dust mixes. Elect. J. Geotech. Eng. 18, 3487–3500 (2013)

    Google Scholar 

  82. Sabat, A.K.; Bose, B.: Strength, swelling and durability characteristics of fly ash-lime stabilized expansive soil-ceramic dust mixes. Paper Accepted for publication in International Journal of Earth Sciences and Engineering (2014)

  83. Saudi Friendship Committee: Al-Qarah Mountain Operator. Facebook Album: timeline photos. Photo taken by the Professor and traveler Cecil Green (2020)

  84. Seda, J.H.; Lee, J.C.; Carraro, J.A.H.: Beneficial use of waste tire rubber for swelling potential mitigation in expansive soils. Proc. Geo-Denver 2007, Geotechnical Special Publication No.172,1-9 (2007)

  85. Srinivasulu, G.; Rao, A.V.N.: Efficacy of baryte powder as a soil stabiliser. J. Inst. Eng. (I) 76, 129–131 (1995)

    Google Scholar 

  86. Swami, B.L.: Feasibility study of marble dust in highway sector. Highway Res. Bull. 67, 27–36 (2002)

    Google Scholar 

  87. Teixeira, E.R.; Machado, G.; Junior, A.P.; Guarnier, C.; Fernandes, J.; Silva, S.M.; Mateus, R.: Mechanical and thermal performance characterization of compressed earth blocks. Energies 2020(13), 2978 (2020). https://doi.org/10.3390/en13112978

    Article  Google Scholar 

  88. Tripura, D.D.; Sing, K.D.: Characteristic properties of cement-stabilized rammed earth blocks. Am. Soc. Civil Eng. (ASCE) (2014). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001170

    Article  Google Scholar 

  89. UBC.: Uniform building code, 1997 Ed. In: International Conference of Building Officials, Whittier, Calif (1997)

  90. Vysakh, P.; Bindu, J.: Stabilisation of lateritic soil using coconut shell, leaf and husk ash. In: Proceedings of the 2012 International Conference on Green Technologies (ICGT) (pp. 274–279). IEEE (2012)

  91. Walker, P.K.; Martin, R.J.; Maniatidis, V.: Rammed earth: Design and construction guidelines. BRE Bookshop, Zimbabwe (2005)

    Google Scholar 

  92. Walker, P.J.: Strength and erosion characteristics of earth blocks and earth blocks masonry. J. Mater. Civil Eng. 16(5), 497–506 (2004)

    Article  Google Scholar 

  93. Yi, Y.; Gu, L.; Liu, S.: Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blastfurnace slag. Appl. Clay Sci. 103, 71–76 (2015)

    Article  Google Scholar 

  94. Zoubir, W.; Harichane, K.; Ghrici, M.: Effect of lime and natural pozzolana on dredged sludge engineering properties. Elect. J. Geotech. Eng. 18, 589–600 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors express their warmest gratitude to King Fahd University of Petroleum and Minerals (KFUPM) for the opportunity to accomplish this work through DSR-funded Project No. IN161032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Al-Osta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zami, M.S., Ewebajo, A.O., Al-Amoudi, O.S.B. et al. Compressive Strength and Wetting–Drying Cycles of Al-Hofuf "Hamrah" Soil Stabilized with Cement and Lime. Arab J Sci Eng 47, 13249–13264 (2022). https://doi.org/10.1007/s13369-022-06576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06576-0

Keywords

Navigation