Skip to main content

Advertisement

Log in

EOSMA: An Equilibrium Optimizer Slime Mould Algorithm for Engineering Design Problems

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we propose EOSMA, an equilibrium optimizer (EO)-guided slime mould algorithm (SMA), to improve efficiency by optimizing the search of SMAs. Firstly, the exploration and exploitation abilities of SMA are adapted to enhance the exploration in the early stage and the exploitation in the later stage. Secondly, the anisotropic search operator of SMA is replaced with the search operator of the equilibrium optimizer (EO) to guide search space of SMAs (EOSMA). Finally, the stochastic difference mutation operator is added to help the SMA algorithm escape from local optima after population location updates and to increase the diversity of the population at the late iteration. The performance of EOSMA is evaluated on CEC2019 and CEC2021 functions and nine engineering design problems. The results show that for the challenging CEC2019 functions, EOSMA significantly outperforms the 15 well-known comparison algorithms in terms of Mean and Min metrics. For the latest CEC2021 functions, EOSMA significantly outperforms IMODE, LSHADE, and LSHADE_cnEpSin in terms of Min metrics. In particular, for all nine engineering problems, EOSMA is able to find feasible solutions satisfying all constraints and significantly outperforms the advanced comparison algorithms such as SMA, EO, MPA, IGWO, AGPSO, MTDE in terms of solution accuracy, speed, and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Povalej, Ž: Quasi-Newton’s method for multiobjective optimization. J. Comput. Appl. Math. 255, 765–777 (2014)

    Article  MathSciNet  Google Scholar 

  2. Zhang, J.; Xiao, Y.; Wei, Z.: Nonlinear conjugate gradient methods with sufficient descent condition for large-scale unconstrained optimization. Math. Probl. Eng. 2009, 1–16 (2009). https://doi.org/10.1155/2009/243290

    Article  MathSciNet  MATH  Google Scholar 

  3. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.: Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 11(7), 1501–1529 (2020). https://doi.org/10.1007/s13042-019-01053-x

    Article  Google Scholar 

  4. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  5. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S.: Equilibrium optimizer: a novel optimization algorithm. Knowl. Based Syst. 191, 105190 (2020). https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  6. Goldberg, D.E.; Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3, 95–99 (1988)

    Article  Google Scholar 

  7. Storn, R.; Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  8. Yao, X.; Liu, Y.; Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999). https://doi.org/10.1109/4235.771163

    Article  Google Scholar 

  9. Kirkpatrick, S.: Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34(5–6), 975–986 (1984). https://doi.org/10.1007/BF01009452

    Article  MathSciNet  Google Scholar 

  10. Grover, L. K.: A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC ’96, pp. 212–219. Philadelphia, Pennsylvania, United States (1996) doi: https://doi.org/10.1145/237814.237866

  11. Erol, O.K.; Eksin, I.: A new optimization method: big Bang-Big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006). https://doi.org/10.1016/j.advengsoft.2005.04.005

    Article  Google Scholar 

  12. Alatas, B.: ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 38(10), 13170–13180 (2011). https://doi.org/10.1016/j.eswa.2011.04.126

    Article  Google Scholar 

  13. Shareef, H.; Ibrahim, A.A.; Mutlag, A.H.: Lightning search algorithm. Appl. Soft Comput. 36, 315–333 (2015). https://doi.org/10.1016/j.asoc.2015.07.028

    Article  Google Scholar 

  14. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A.: Multi-Verse Optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016). https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  15. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009). https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  16. Patel, V.K.; Savsani, V.J.: Heat transfer search (HTS): a novel optimization algorithm. Inf. Sci. 324, 217–246 (2015). https://doi.org/10.1016/j.ins.2015.06.044

    Article  Google Scholar 

  17. Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S.: Henry gas solubility optimization: a novel physics-based algorithm. Future Gener. Comput. Syst. 101, 646–667 (2019). https://doi.org/10.1016/j.future.2019.07.015

    Article  Google Scholar 

  18. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M.: Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110–111, 151–166 (2012). https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  19. Zhao, W.; Wang, L.; Zhang, Z.: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl. -Based Syst. 163, 283–304 (2019). https://doi.org/10.1016/j.knosys.2018.08.030

    Article  Google Scholar 

  20. Anita; Yadav, A.: AEFA: artificial electric field algorithm for global optimization. Swarm Evol. Comput. 48, 93–108 (2019). https://doi.org/10.1016/j.swevo.2019.03.013

    Article  Google Scholar 

  21. Eberhart, R.; Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. Nagoya, Japan (1995) doi: https://doi.org/10.1109/MHS.1995.494215

  22. Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007). https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Rao, R.V.; Savsani, V.J.; Vakharia, D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011). https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  24. Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  25. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  26. Cuevas, E.; Cienfuegos, M.; Zaldívar, D.; Pérez-Cisneros, M.: A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384 (2013). https://doi.org/10.1016/j.eswa.2013.05.041

    Article  Google Scholar 

  27. Dhiman, G.; Kumar, V.: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl. Based Syst. 165, 169–196 (2019). https://doi.org/10.1016/j.knosys.2018.11.024

    Article  Google Scholar 

  28. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H.: Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2020). https://doi.org/10.1016/j.eswa.2020.113377

    Article  Google Scholar 

  29. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.- Based Syst. 89, 228–249 (2015). https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  30. Yapici, H.; Cetinkaya, N.: A new meta-heuristic optimizer: Pathfinder algorithm. Appl. Soft Comput. 78, 545–568 (2019). https://doi.org/10.1016/j.asoc.2019.03.012

    Article  Google Scholar 

  31. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.: Harris hawks optimization: algorithm and applications. Future Gener. Comput. Syst. 97, 849–872 (2019). https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  32. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S.: Slime mould algorithm: a new method for stochastic optimization. Future Gener. Comput. Syst. 111, 300–323 (2020). https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  33. Wolpert, D.H.; Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  34. Abdel-Basset, M.; Chang, V.; Mohamed, R.: HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images. Appl. Soft Comput. 95, 106642 (2020). https://doi.org/10.1016/j.asoc.2020.106642

    Article  Google Scholar 

  35. Zhao, S., et al.: Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi’s entropy for chronic obstructive pulmonary disease. Comput. Biol. Med. 134, 104427 (2021). https://doi.org/10.1016/j.compbiomed.2021.104427

    Article  Google Scholar 

  36. Naik, M.K.; Panda, R.; Abraham, A.: Normalized square difference based multilevel thresholding technique for multispectral images using leader slime mould algorithm. J. King Saud Univ. - Comput. Inf. Sci. (2020). https://doi.org/10.1016/j.jksuci.2020.10.030

    Article  Google Scholar 

  37. Yousri, D.; Fathy, A.; Rezk, H.; Babu, T.S.; Berber, M.R.: A reliable approach for modeling the photovoltaic system under partial shading conditions using three diode model and hybrid marine predators-slime mould algorithm. Energy Convers. Manag. 243, 114269 (2021). https://doi.org/10.1016/j.enconman.2021.114269

    Article  Google Scholar 

  38. Mostafa, M.; Rezk, H.; Aly, M.; Ahmed, E.M.: A new strategy based on slime mould algorithm to extract the optimal model parameters of solar PV panel. Sustain. Energy Technol. Assess. 42, 100849 (2020). https://doi.org/10.1016/j.seta.2020.100849

    Article  Google Scholar 

  39. El-Fergany, A.A.: Parameters identification of PV model using improved slime mould optimizer and Lambert W-function. Energy Rep. 7, 875–887 (2021). https://doi.org/10.1016/j.egyr.2021.01.093

    Article  Google Scholar 

  40. Liu, Y.; Heidari, A.A.; Ye, X.; Liang, G.; Chen, H.; He, C.: Boosting slime mould algorithm for parameter identification of photovoltaic models. Energy 234, 121164 (2021). https://doi.org/10.1016/j.energy.2021.121164

    Article  Google Scholar 

  41. Kumar, C.; Raj, T.D.; Premkumar, M.; Raj, T.D.: A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters. Optik 223, 165277 (2020). https://doi.org/10.1016/j.ijleo.2020.165277

    Article  Google Scholar 

  42. Premkumar, M.; Jangir, P.; Sowmya, R.; Alhelou, H.H.; Heidari, A.A.; Chen, H.: MOSMA: multi-objective slime mould algorithm based on elitist non-dominated sorting. IEEE Access 9, 3229–3248 (2021). https://doi.org/10.1109/ACCESS.2020.3047936

    Article  Google Scholar 

  43. Abdel-Basset, M.; Mohamed, R.; Chakrabortty, R.K.; Ryan, M.J.; Mirjalili, S.: An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection. Comput. Ind. Eng. 153, 107078 (2021). https://doi.org/10.1016/j.cie.2020.107078

    Article  Google Scholar 

  44. Abdollahzadeh, B.; Barshandeh, S.; Javadi, H.; Epicoco, N.: An enhanced binary slime mould algorithm for solving the 0–1 knapsack problem. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01470-z

    Article  Google Scholar 

  45. Zubaidi, S.L., et al.: Hybridised artificial neural network model with slime mould algorithm: a novel methodology for prediction of urban stochastic water demand. Water 12(10), 2692 (2020). https://doi.org/10.3390/w12102692

    Article  Google Scholar 

  46. Chen, Z.; Liu, W.: An efficient parameter adaptive support vector regression using K-means clustering and chaotic slime mould algorithm. IEEE Access 8, 156851–156862 (2020). https://doi.org/10.1109/ACCESS.2020.3018866

    Article  Google Scholar 

  47. Ekinci, S.; Izci, D.; Zeynelgil, H. L.; Orenc, S.: An application of slime mould algorithm for optimizing parameters of power system stabilizer. In: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–5. Istanbul, Turkey, (2020) doi: https://doi.org/10.1109/ISMSIT50672.2020.9254597

  48. Rizk-Allah, R.M.; Hassanien, A.E.; Song, D.: Chaos-opposition-enhanced slime mould algorithm for minimizing the cost of energy for the wind turbines on high-altitude sites. ISA Trans (2021). https://doi.org/10.1016/j.isatra.2021.04.011

    Article  Google Scholar 

  49. Hassan, M.H.; Kamel, S.; Abualigah, L.; Eid, A.: Development and application of slime mould algorithm for optimal economic emission dispatch. Expert Syst. Appl. 182, 115205 (2021). https://doi.org/10.1016/j.eswa.2021.115205

    Article  Google Scholar 

  50. Wazery, Y.M.; Saber, E.; Houssein, E.H.; Ali, A.A.; Amer, E.: An efficient slime mould algorithm combined with K-nearest neighbor for medical classification tasks. IEEE Access 9, 113666–113682 (2021). https://doi.org/10.1109/ACCESS.2021.3105485

    Article  Google Scholar 

  51. Houssein, E.H.; Mahdy, M.A.; Blondin, M.J.; Shebl, D.; Mohamed, W.M.: Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems. Expert Syst. Appl. 174, 114689 (2021). https://doi.org/10.1016/j.eswa.2021.114689

    Article  Google Scholar 

  52. Yu, C.; Heidari, A.A.; Xue, X.; Zhang, L.; Chen, H.; Chen, W.: Boosting quantum rotation gate embedded slime mould algorithm. Expert Syst. Appl. 181, 115082 (2021). https://doi.org/10.1016/j.eswa.2021.115082

    Article  Google Scholar 

  53. Zhao, W.; Wang, L.; Zhang, Z.: Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm”. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04452-x

    Article  Google Scholar 

  54. Zhao, W.; Zhang, Z.; Wang, L.: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 87, 103300 (2020). https://doi.org/10.1016/j.engappai.2019.103300

    Article  Google Scholar 

  55. Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X.: Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf. Sci. 540, 131–159 (2020). https://doi.org/10.1016/j.ins.2020.06.037

    Article  MathSciNet  MATH  Google Scholar 

  56. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.: An improved grey wolf optimizer for solving engineering problems. Expert Syst. Appl. 166, 113917 (2021). https://doi.org/10.1016/j.eswa.2020.113917

    Article  Google Scholar 

  57. Mirjalili, S.; Lewis, A.; Sadiq, A.S.: Autonomous particles groups for particle swarm optimization. Arab. J. Sci. Eng. 39(6), 4683–4697 (2014). https://doi.org/10.1007/s13369-014-1156-x

    Article  MATH  Google Scholar 

  58. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Faris, H.: MTDE: an effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Appl. Soft Comput. 97, 106761 (2020). https://doi.org/10.1016/j.asoc.2020.106761

    Article  Google Scholar 

  59. Sallam, K. M.; Elsayed, S. M.; Chakrabortty, R. K.; Ryan, M. J.: Improved Multi-operator differential evolution algorithm for solving unconstrained problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. Glasgow, United Kingdom (2020) doi: https://doi.org/10.1109/CEC48606.2020.9185577

  60. Biswas, S.; Saha, D.; De, S.; Cobb, A. D.; Das, S.; Jalaian, B. A.: Improving differential evolution through bayesian hyperparameter optimization. In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 832–840. Kraków, Poland, (2021), doi: https://doi.org/10.1109/CEC45853.2021.9504792

  61. Tanabe, R.; Fukunaga, A. S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. Beijing, China, (2014) doi: https://doi.org/10.1109/CEC.2014.6900380

  62. Awad, N. H.; Ali, M. Z.; Suganthan, P. N.: Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 372–379. Donostia, San Sebastián, Spain, (2017), doi: https://doi.org/10.1109/CEC.2017.7969336

  63. Niu, P.; Niu, S.; Liu, N.; Chang, L.: The defect of the Grey Wolf optimization algorithm and its verification method. Knowl.- Based Syst. 171, 37–43 (2019). https://doi.org/10.1016/j.knosys.2019.01.018

    Article  Google Scholar 

  64. Tzanetos, A.; Dounias, G.: Nature inspired optimization algorithms or simply variations of metaheuristics? Artif. Intell. Rev. 54(3), 1841–1862 (2021). https://doi.org/10.1007/s10462-020-09893-8

    Article  MATH  Google Scholar 

  65. Sörensen, K.: Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015). https://doi.org/10.1111/itor.12001

    Article  MathSciNet  MATH  Google Scholar 

  66. Fan, Q.; Huang, H.; Yang, K.; Zhang, S.; Yao, L.; Xiong, Q.: A modified equilibrium optimizer using opposition-based learning and novel update rules. Expert Syst. Appl. 170, 114575 (2021). https://doi.org/10.1016/j.eswa.2021.114575

    Article  Google Scholar 

  67. Jia, H.; Peng, X.: High equilibrium optimizer for global optimization. J. Intell. Fuzzy Syst. 40(3), 5583–5594 (2021). https://doi.org/10.3233/JIFS-200101

    Article  MathSciNet  Google Scholar 

  68. Kumar, A.; Das, S.; Zelinka, I.: A self-adaptive spherical search algorithm for real-world constrained optimization problems. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 13–14. Cancún Mexico, (2020) doi: https://doi.org/10.1145/3377929.3398186

  69. Gupta, S.; Deep, K.; Engelbrecht, A.P.: A memory guided sine cosine algorithm for global optimization. Eng. Appl. Artif. Intell. 93, 103718 (2020). https://doi.org/10.1016/j.engappai.2020.103718

    Article  Google Scholar 

  70. Sharma, S.; Saha, A.K.; Lohar, G.: Optimization of weight and cost of cantilever retaining wall by a hybrid metaheuristic algorithm. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01294-x

    Article  Google Scholar 

  71. Pant, M.; Thangaraj, R.; Singh, V.P.: Optimization of mechanical design problems using improved differential evolution algorithm. Int. J. Recent Trends Eng. 1(5), 21–25 (2009)

    Google Scholar 

  72. Kumar, A.; Wu, G.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N.; Das, S.: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol. Comput. 56, 100693 (2020). https://doi.org/10.1016/j.swevo.2020.100693

    Article  Google Scholar 

  73. Jarmai, K.; Snyman, J.A.; Farkas, J.: Minimum cost design of a welded orthogonally stiffened cylindrical shell. Comput. Struct. 84, 787–797 (2006). https://doi.org/10.1016/j.compstruc.2006.01.002

    Article  Google Scholar 

  74. Savsani, P.; Savsani, V.: Passing vehicle search (PVS): a novel metaheuristic algorithm. Appl. Math. Model. 40(5–6), 3951–3978 (2016). https://doi.org/10.1016/j.apm.2015.10.040

    Article  Google Scholar 

  75. Simionescu, P.V.; Beale, D.; Dozier, G.V.: Teeth-Number synthesis of a multispeed planetary transmission using an estimation of distribution algorithm. J. Mech. Des. 128, 108–115 (2006). https://doi.org/10.1115/1.2114867

    Article  Google Scholar 

  76. Singh, N.; Kaur, J.: Hybridizing sine–cosine algorithm with harmony search strategy for optimization design problems. Soft Comput. 25(16), 11053–11075 (2021). https://doi.org/10.1007/s00500-021-05841-y

    Article  Google Scholar 

  77. Abderazek, H.; Sait, S.M.; Yildiz, A.R.: Optimal design of planetary gear train for automotive transmissions using advanced meta-heuristics. Int. J. Veh. Des. 80(2–4), 121–136 (2020). https://doi.org/10.1504/IJVD.2019.109862

    Article  Google Scholar 

  78. Osyczka, A.; Krenich, S.; Karas, K.: Optimum design of robot grippers using genetic algorithms. Buffalo, New York, pp. 241–243 (1999). Accessed: Sep. 17, 2021. [Online]. Available: http://www.lania.mx/~ccoello/EMOO/osyczka99.pdf.gz

  79. Yildiz, B.S.; Pholdee, N.; Bureerat, S.; Yildiz, A.R.; Sait, S.M.: Robust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithm. Expert Syst. (2021). https://doi.org/10.1111/exsy.12666

    Article  Google Scholar 

  80. Yildiz, B.S.; Pholdee, N.; Bureerat, S.; Yildiz, A.R.; Sait, S.M.: Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01368-w

    Article  Google Scholar 

  81. Pomrehn, L.P.; Papalambros, P.Y.: Discrete optimal design formulations with application to gear train design. J. Mech. Des. 117(3), 419–424 (1995)

    Article  Google Scholar 

  82. Tanabe, R.; Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation, pp. 71–78. Cancun, Mexico, (2013), doi: https://doi.org/10.1109/CEC.2013.6557555

  83. Kizilay, D.; Tasgetiren, M. F.; Oztop, H.; Kandiller, L.; Suganthan, P. N.: A differential evolution algorithm with q-learning for solving engineering design problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. Glasgow, United Kingdom, (2020), doi: https://doi.org/10.1109/CEC48606.2020.9185743

  84. Gotmare, A.; Bhattacharjee, S.S.; Patidar, R.; George, N.V.: Swarm and evolutionary computing algorithms for system identification and filter design: a comprehensive review. Swarm Evol. Comput. 32, 68–84 (2017). https://doi.org/10.1016/j.swevo.2016.06.007

    Article  Google Scholar 

  85. Zou, D.-X.; Deb, S.; Wang, G.-G.: Solving IIR system identification by a variant of particle swarm optimization. Neural Comput. Appl. 30(3), 685–698 (2018). https://doi.org/10.1007/s00521-016-2338-0

    Article  Google Scholar 

  86. Zhao, R., et al.: Selfish herd optimization algorithm based on chaotic strategy for adaptive IIR system identification problem. Soft Comput. 24(10), 7637–7684 (2020). https://doi.org/10.1007/s00500-019-04390-9

    Article  Google Scholar 

  87. Zhang, L.; Xiao, N.: A novel artificial bee colony algorithm for inverse kinematics calculation of 7-DOF serial manipulators. Soft Comput. 23(10), 3269–3277 (2019). https://doi.org/10.1007/s00500-017-2975-y

    Article  Google Scholar 

  88. Toz, M.: Chaos-based Vortex search algorithm for solving inverse kinematics problem of serial robot manipulators with offset wrist. Appl. Soft Comput. 89, 106074 (2020). https://doi.org/10.1016/j.asoc.2020.106074

    Article  Google Scholar 

  89. Dereli, S.; Köker, R.: A meta-heuristic proposal for inverse kinematics solution of 7-DOF serial robotic manipulator: quantum behaved particle swarm algorithm. Artif. Intell. Rev. 53(2), 949–964 (2020). https://doi.org/10.1007/s10462-019-09683-x

    Article  Google Scholar 

  90. Youn, B.D.; Choi, K.K.; Yang, R.-J.; Gu, L.: Reliability-based design optimization for crashworthiness of vehicle side impact. Struct. Multidiscip. Optim. 26(3–4), 272–283 (2004). https://doi.org/10.1007/s00158-003-0345-0

    Article  Google Scholar 

  91. Wang, Y.; Cai, Z.; Zhou, Y.; Fan, Z.: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Struct. Multidiscip. Optim. 37(4), 395–413 (2009). https://doi.org/10.1007/s00158-008-0238-3

    Article  Google Scholar 

  92. Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013). https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  93. Bala Krishna, A.; Saxena, S.; Kamboj, V.K.: hSMA-PS: a novel memetic approach for numerical and engineering design challenges. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01371-1

    Article  Google Scholar 

  94. Kamboj, V.K.; Nandi, A.; Bhadoria, A.; Sehgal, S.: An intensify Harris Hawks optimizer for numerical and engineering optimization problems. Appl. Soft Comput. 89, 106018 (2020). https://doi.org/10.1016/j.asoc.2019.106018

    Article  Google Scholar 

  95. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H.: The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 376, 113609 (2021). https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  MATH  Google Scholar 

  96. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H.: Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 157, 107250 (2021). https://doi.org/10.1016/j.cie.2021.107250

    Article  Google Scholar 

  97. Gandomi, A.H.; Yang, X.-S.; Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013). https://doi.org/10.1007/s00366-011-0241-y

    Article  Google Scholar 

  98. Mohamed, A.W.: A novel differential evolution algorithm for solving constrained engineering optimization problems. J Intell. Manuf. (2017). https://doi.org/10.1007/s10845-017-1294-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China under Grant No. 62066005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Zhou.

Ethics declarations

Conflict of interest

No potential conflict of interest has been stated by the authors.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Luo, Q. & Zhou, Y. EOSMA: An Equilibrium Optimizer Slime Mould Algorithm for Engineering Design Problems. Arab J Sci Eng 47, 10115–10146 (2022). https://doi.org/10.1007/s13369-021-06513-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06513-7

Keywords

Navigation