Skip to main content
Log in

Stability Analysis of Fluid Conveying Axially Functionally Graded Micro-Pipes Using a Refined Tube Model

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The aim of the current study is to put forward a new model for stability analysis of axially functionally graded micro-pipes conveying fluid. Modified couple stress theory is employed to capture the scale effects. The displacement field is presented in a unified form such that the formulations based on conventional Euler–Bernoulli and Timoshenko theories as well as newly developed higher order shear deformable tube model which properly satisfies transverse shear requirements on free surfaces, are retrievable. The material properties are assumed to be varying through-the-length according to a power-law function. Hamilton’s principle is utilized to derive formulation governing the current fluid–solid interaction problem. In order to generate numerical results, the system of equations is discretized and converted to the standard generalized eigenvalue problem by utilizing differential quadrature technique. The influences of size which is captured by length scale parameter of modified couple stress theory, material distribution pattern, geometrical aspects, and fluid velocity upon the stability of axially functionally graded micro-pipes conveying fluid have been elucidated through detailed numerical investigations. Developed procedures also enable determination of the value of critical flow velocity, which is a significant parameter in designing small-scale pipes containing internal flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schwengber, A.; Prado, H.J.; Zilli, D.A.; Bonelli, P.R.; Cukierman, A.L.: Carbon nanotubes buckypapers for potential transdermal drug delivery. Mater. Sci. Eng C. 57, 7–13 (2015). https://doi.org/10.1016/j.msec.2015.07.030

    Article  Google Scholar 

  2. Sadeghi-Goughari, M.; Jeon, S.; Kwon, H.-J.: Fluid structure interaction of cantilever micro and nanotubes conveying magnetic fluid with small size effects under a transverse magnetic field. J. Fluids. Struct. 94, 102951 (2020). https://doi.org/10.1016/j.jfluidstructs.2020.102951

    Article  Google Scholar 

  3. Amiri, A.; Pournaki, I.J.; Jafarzadeh, E.; Shabani, R.; Rezazadeh, G.: Vibration and instability of fluid-conveyed smart micro-tubes based on magneto-electro-elasticity beam model. Microfluid. Nanofluid. 20(2), 38 (2016). https://doi.org/10.1007/s10404-016-1706-5

    Article  Google Scholar 

  4. Wu, Z.-J.; Luo, Z.; Rastogia, A.; Stavchansky, S.; Bowman, P.D.; Ho, P.S.: Micro-fabricated perforated polymer devices for long-term drug delivery. Biomed. Microdevices. 13(3), 485–491 (2011). https://doi.org/10.1007/s10544-011-9516-8

    Article  Google Scholar 

  5. Groenesteijn J, van de Ridder L, Lötters JC, Wiegerink RJ. (2014) Modelling of a micro Coriolis mass flow sensor for sensitivity improvement. Sensors, pp. 954–957, IEEE, https://doi.org/10.1109/ICSENS.2014.6985160

  6. Ghazavi, M.R.; Molki, H.; Ali beigloo, A.: Nonlinear vibration and stability analysis of the curved microtube conveying fluid as a model of the micro coriolis flowmeters based on strain gradient theory. Appl. Math. Model. 45, 1020–1030 (2017). https://doi.org/10.1016/j.apm.2017.01.048

    Article  MathSciNet  MATH  Google Scholar 

  7. Huber, C.: MEMS-based micro-Coriolis technology for high precision density measurement. Tm-Tech. Mess. 83(3), 157–162 (2016). https://doi.org/10.1515/teme-2015-0092

    Article  Google Scholar 

  8. Bhardwaj, P.; Bagdi, P.; Sen, A.K.: Microfluidic device based on a micro-hydrocyclone for particle–liquid separation. Lab. Chip. 11(23), 4012–4021 (2011). https://doi.org/10.1039/C1LC20606K

    Article  Google Scholar 

  9. Sajeesh, P.; Sen, A.K.: Particle separation and sorting in microfluidic devices: a review. Microfluid. Nanofluid. 17(1), 1–52 (2014). https://doi.org/10.1007/s10404-013-1291-9

    Article  Google Scholar 

  10. Paidoussis, M.P.: Fluid-structure interactions: Slender structures and axial flow. Academic Press, London (1998)

    Google Scholar 

  11. Yang, F.; Chong, A.C.M.; Lam, D.C.C.; Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids. Struct. 39(10), 2731–2743 (2002). https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  12. Lam, D.C.C.; Yang, F.; Chong, A.C.M.; Wang, J.; Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids. 51(8), 1477–1508 (2003). https://doi.org/10.1016/S0022-5096(03)00053-X

    Article  MATH  Google Scholar 

  13. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983). https://doi.org/10.1063/1.332803

    Article  Google Scholar 

  14. Lee, U.; Park, J.: Spectral element modelling and analysis of a pipeline conveying internal unsteady fluid. J. Fluids. Struct. 22(2), 273–292 (2006). https://doi.org/10.1016/j.jfluidstructs.2005.09.003

    Article  Google Scholar 

  15. Xu, M.R.; Xu, S.P.; Guo, H.Y.: Determination of natural frequencies of fluid-conveying pipes using homotopy perturbation method. Comput. Math. Appl. 60(3), 520–527 (2010). https://doi.org/10.1016/j.camwa.2010.04.049

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, T.; Ouyang, H.; Zhang, Y.O.; Lv, B.L.: Nonlinear dynamics of straight fluid-conveying pipes with general boundary conditions and additional springs and masses. Appl. Math. Model. 40(17), 7880–7900 (2016). https://doi.org/10.1016/j.apm.2016.03.050

    Article  MathSciNet  MATH  Google Scholar 

  17. Tang, Y.; Zhen, Y.; Fang, B.: Nonlinear vibration analysis of a fractional dynamic model for the viscoelastic pipe conveying fluid. Appl. Math. Model. 56, 123–136 (2018). https://doi.org/10.1016/j.apm.2017.11.022

    Article  MathSciNet  MATH  Google Scholar 

  18. Bahaadini, R.; Hosseini, M.; Jamali, B.: Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid. Physica. B Condens. Matter. 529, 57–65 (2018). https://doi.org/10.1016/j.physb.2017.09.130

    Article  Google Scholar 

  19. Ghayesh, M.H.; Farokhi, H.; Farajpour, A.: Global dynamics of fluid conveying nanotubes. Int. J. Eng. Sci. 135, 37–57 (2019). https://doi.org/10.1016/j.ijengsci.2018.11.003

    Article  MathSciNet  MATH  Google Scholar 

  20. Bahaadini, R.; Saidi, A.R.; Hosseini, M.: On dynamics of nanotubes conveying nanoflow. Int. J. Eng. Sci. 123, 181–196 (2018). https://doi.org/10.1016/j.ijengsci.2017.11.010

    Article  MathSciNet  MATH  Google Scholar 

  21. Yin, L.; Qian, Q.; Wang, L.: Strain gradient beam model for dynamics of microscale pipes conveying fluid. Appl. Math. Model. 35(6), 2864–2873 (2011). https://doi.org/10.1016/j.apm.2010.11.069

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, L.: Size-dependent vibration characteristics of fluid-conveying microtubes. J. Fluids. Struct. 26(4), 675–684 (2010). https://doi.org/10.1016/j.jfluidstructs.2010.02.005

    Article  Google Scholar 

  23. Mirtalebi, S.H.; Ahmadian, M.T.; Ebrahimi-Mamaghani, A.: On the dynamics of micro-tubes conveying fluid on various foundations. SN. Appl. Sci. 1(6), 547 (2019). https://doi.org/10.1007/s42452-019-0562-9

    Article  Google Scholar 

  24. Dai, H.; Wang, L.; Ni, Q.: Dynamics and pull-in instability of electrostatically actuated microbeams conveying fluid. Microfluid. Nanofluid. 18(1), 49–55 (2015). https://doi.org/10.1007/s10404-014-1407-x

    Article  Google Scholar 

  25. Xia, W.; Wang, L.: Microfluid-induced vibration and stability of structures modeled as microscale pipes conveying fluid based on non-classical Timoshenko beam theory. Microfluid. Nanofluid. 9(4–5), 955–962 (2010). https://doi.org/10.1007/s10404-010-0618-z

    Article  Google Scholar 

  26. Mahamood, R.M.; Akinlabi, E.T.: Types of functionally graded materials and their areas of application. In: Mahamood, R.M.; Akinlabi, E.T. (Eds.) Functionally Graded Materials, pp. 9–21. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  27. Petit, C.; Montanaro, L.; Palmero, P.: Functionally graded ceramics for biomedical application: Concept, manufacturing, and properties. Int. J. Appl. Ceram. Technol. 15(4), 820–840 (2018). https://doi.org/10.1111/ijac.12878

    Article  Google Scholar 

  28. Tang, Y.; Yang, T.: Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material. Compos. Struct. 185, 393–400 (2018). https://doi.org/10.1016/j.compstruct.2017.11.032

    Article  Google Scholar 

  29. Liu, H.; Lv, Z.; Tang, H.: Nonlinear vibration and instability of functionally graded nanopipes with initial imperfection conveying fluid. Appl. Math. Model. 76, 133–150 (2019). https://doi.org/10.1016/j.apm.2019.06.011

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, B.; Chen, X.-C.; Guo, Y.; Li, Y.-H.: Static and dynamic characteristics of the post-buckling of fluid-conveying porous functionally graded pipes with geometric imperfections. Int. J. Mech. Sci. 189, 105947 (2021). https://doi.org/10.1016/j.ijmecsci.2020.105947

    Article  Google Scholar 

  31. Dehrouyeh-Semnani, A.M.; Dehdashti, E.; Yazdi, M.R.H.; Nikkhah-Bahrami, M.: Nonlinear thermo-resonant behavior of fluid-conveying FG pipes. Int. J. Eng. Sci. 144, 103141 (2019). https://doi.org/10.1016/j.ijengsci.2019.103141

    Article  MathSciNet  MATH  Google Scholar 

  32. Khodabakhsh, R.; Saidi, A.R.; Bahaadini, R.: An analytical solution for nonlinear vibration and post-buckling of functionally graded pipes conveying fluid considering the rotary inertia and shear deformation effects. Appl. Ocean. Res. 101, 102277 (2020). https://doi.org/10.1016/j.apor.2020.102277

    Article  Google Scholar 

  33. Deng, J.; Liu, Y.; Zhang, Z.; Liu, W.: Stability analysis of multi-span viscoelastic functionally graded material pipes conveying fluid using a hybrid method. Eur. J. Mech. A/Solids. 65, 257–270 (2017). https://doi.org/10.1016/j.euromechsol.2017.04.003

    Article  MathSciNet  MATH  Google Scholar 

  34. Reddy, R.S.; Panda, S.; Natarajan, G.: Nonlinear dynamics of functionally graded pipes conveying hot fluid. Nonlinear. Dyn. 99(3), 1989–2010 (2020). https://doi.org/10.1007/s11071-019-05426-3

    Article  Google Scholar 

  35. Zhu, B.; Xu, Q.; Li, M.; Li, Y.: Nonlinear free and forced vibrations of porous functionally graded pipes conveying fluid and resting on nonlinear elastic foundation. Compos. Struct. 252, 112672 (2020). https://doi.org/10.1016/j.compstruct.2020.112672

    Article  Google Scholar 

  36. Hosseini, M.; Maryam, A.Z.B.; Bahaadini, R.: Forced vibrations of fluid-conveyed double piezoelectric functionally graded micropipes subjected to moving load. Microfluid. Nanofluid. 21(8), 134 (2017). https://doi.org/10.1007/s10404-017-1963-y

    Article  Google Scholar 

  37. Ansari, R.; Gholami, R.; Norouzzadeh, A.; Sahmani, S.: Size-dependent vibration and instability of fluid-conveying functionally graded microshells based on the modified couple stress theory. Microfluid. Nanofluid. 19(3), 509–522 (2015). https://doi.org/10.1007/s10404-015-1577-1

    Article  Google Scholar 

  38. Deng, J.; Liu, Y.; Liu, W.: Size-dependent vibration analysis of multi-span functionally graded material micropipes conveying fluid using a hybrid method. Microfluid. Nanofluid. 21(8), 133 (2017). https://doi.org/10.1007/s10404-017-1967-7

    Article  Google Scholar 

  39. An, C.; Su, J.: Dynamic behavior of axially functionally graded pipes conveying fluid. Math. Probl. Eng. 2017, 6789634 (2017). https://doi.org/10.1155/2017/6789634

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhou, X.-W.; Dai, H.-L.; Wang, L.: Dynamics of axially functionally graded cantilevered pipes conveying fluid. Compos. Struct. 190, 112–118 (2018). https://doi.org/10.1016/j.compstruct.2018.01.097

    Article  Google Scholar 

  41. Lu, Z.-Q.; Zhang, K.-K.; Ding, H.; Chen, L.-Q.: Nonlinear vibration effects on the fatigue life of fluid-conveying pipes composed of axially functionally graded materials. Nonlinear. Dyn. 100(2), 1091–1104 (2020). https://doi.org/10.1007/s11071-020-05577-8

    Article  Google Scholar 

  42. Ebrahimi-Mamaghani, A.; Sotudeh-Gharebagh, R.; Zarghami, R.; Mostoufi, N.: Thermo-mechanical stability of axially graded Rayleigh pipes. Mech. Based. Des. Struct. Mach. 5, 1–30 (2020). https://doi.org/10.1080/15397734.2020.1717967

    Article  Google Scholar 

  43. Dai, J.; Liu, Y.; Liu, H.; Miao, C.; Tong, G.: A parametric study on thermo-mechanical vibration of axially functionally graded material pipe conveying fluid. Int. J. Mech. Mater. Des. 15(4), 715–726 (2019). https://doi.org/10.1007/s10999-018-09439-5

    Article  Google Scholar 

  44. Mirtalebi, S.H.; Ebrahimi-Mamaghani, A.; Ahmadian, M.T.: Vibration control and manufacturing of intelligibly designed axially functionally graded cantilevered macro/micro-tubes. IFAC-PapersOnLine. 52(10), 382–387 (2019). https://doi.org/10.1016/j.ifacol.2019.10.061

    Article  Google Scholar 

  45. Tang, Y.; Yang, T.: Bi-directional functionally graded nanotubes: fluid conveying dynamics. Int. J. Appl. Mech. 10(04), 1850041 (2018). https://doi.org/10.1142/S1758825118500412

    Article  Google Scholar 

  46. Şimşek, M.; Reddy, J.N.: Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013). https://doi.org/10.1016/j.ijengsci.2012.12.002

    Article  MathSciNet  MATH  Google Scholar 

  47. Aghazadeh, R.; Cigeroglu, E.; Dag, S.: Static and free vibration analyses of small-scale functionally graded beams possessing a variable length scale parameter using different beam theories. Eur. J. Mech. A/Solids. 46, 1–11 (2014). https://doi.org/10.1016/j.euromechsol.2014.01.002

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, P.; Fu, Y.: A higher-order beam model for tubes. Eur. J. Mech. A/Solids. 38, 12–19 (2013). https://doi.org/10.1016/j.euromechsol.2012.09.009

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhong, J.; Fu, Y.; Wan, D.; Li, Y.: Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model. Appl. Math. Model. 40(17), 7601–7614 (2016). https://doi.org/10.1016/j.apm.2016.03.031

    Article  MathSciNet  MATH  Google Scholar 

  50. Babaei, H.; Reza Eslami, M.: Size-dependent vibrations of thermally pre/post-buckled FG porous micro-tubes based on modified couple stress theory. Int. J. Mech. Sci. 180, 105694 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105694

    Article  Google Scholar 

  51. She, G.-L.; Yuan, F.-G.; Ren, Y.-R.; Liu, H.-B.; Xiao, W.-S.: Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory. Compos. Struct. 203, 614–623 (2018). https://doi.org/10.1016/j.compstruct.2018.07.063

    Article  Google Scholar 

  52. She, G.-L.; Yuan, F.-G.; Ren, Y.-R.; Xiao, W.-S.: On buckling and postbuckling behavior of nanotubes. Int. J. Eng. Sci. 121, 130–142 (2017). https://doi.org/10.1016/j.ijengsci.2017.09.005

    Article  MathSciNet  MATH  Google Scholar 

  53. Hutchinson, J.R.: Shear coefficients for timoshenko beam theory. J. Appl. Mech. 68(1), 87–92 (2000). https://doi.org/10.1115/1.1349417

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Aghazadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghazadeh, R. Stability Analysis of Fluid Conveying Axially Functionally Graded Micro-Pipes Using a Refined Tube Model. Arab J Sci Eng 47, 8739–8750 (2022). https://doi.org/10.1007/s13369-021-06410-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06410-z

Keywords

Navigation