Skip to main content
Log in

Optimum Mobile Robot Path Planning Using Improved Artificial Bee Colony Algorithm and Evolutionary Programming

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The optimal/shortest path planning is one of the fundamental needs for efficient operation of mobile robot. This research article explores the application of artificial bee colony (ABC) algorithm and evolutionary programming (EP) optimization algorithm to resolve the problem of path planning in an unknown or partially known environment. The ABC algorithm is used for native ferreting procedure and EP for refinement of achieved feasible path. Conventional path planning methods based on ABC–EP didn’t consider the distance between new bee position and nearby obstacles for finding the optimal path, which in turn increases the path length, path planning time, or search cost. To overcome these issues, a novel strategy based on improved ABC–EP has been proposed. The improved ABC–EP finds the optimum path towards the goal position and gets rid of obstacles without any collision using food points which are randomly distributed in the environment. The criteria on which it selects the best food point (\(V_{{{\text{best}}}}\)\()\) not only depend upon the shortest distance of that food point to the goal position but also depend upon the distance of that food point from the nearest obstacles. A number of comparative analyses have been performed in simulation scenario to verify improved ABC–EP's performance and efficiency. The results demonstrate that proposed improved ABC–EP performs better and more effectively as compared to conventional ABC–EP with the improvement of 5.75% in path length, 44.38% in search cost, and 41.08% in path smoothness. The improved ABC–EP achieved optimum path with shortest path length in less time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Afzal, A.; Ramis, M.K.: Multi-objective optimization of thermal performance in battery system using genetic and particle swarm algorithm combined with fuzzy logics. J. Energy Storage. 32, 101815 (2020). https://doi.org/10.1016/j.est.2020.101815

    Article  Google Scholar 

  2. Afzal, A., Samee, A.D.M., Jilte, R. D., Islam, M. T., Manokar, A. M., Abdul Razak, K.: Battery thermal management: An optimization study of parallelized conjugate numerical analysis using Cuckoo search and Artificial bee colony algorithm. Int. J. Heat Mass Transf. 166, 120798 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120798

  3. Sikander, A.; Rajendra Prasad, B.: A novel order reduction method using cuckoo search algorithm. IETE J. Res. 61, 83–90 (2015). https://doi.org/10.1080/03772063.2015.1009396

    Article  MATH  Google Scholar 

  4. Afzal, A.; Mokashi, I.; Khan, S.A.; Abdullah, N.A.; Azami, M.H.: Bin: Optimization and analysis of maximum temperature in a battery pack affected by low to high Prandtl number coolants using response surface methodology and particle swarm optimization algorithm. Numer. Heat Transf. Part A Appl. 79, 406–435 (2020). https://doi.org/10.1080/10407782.2020.1845560

    Article  Google Scholar 

  5. Samuel, O.D.; Okwu, M.O.; Oyejide, O.J.; Taghinezhad, E.; Afzal, A.; Kaveh, M.: Optimizing biodiesel production from abundant waste oils through empirical method and grey wolf optimizer. Fuel 281, 118701 (2020). https://doi.org/10.1016/j.fuel.2020.118701

    Article  Google Scholar 

  6. Lingelbach, F.: Path planning using probabilistic cell decomposition. In: Proceedings - IEEE International Conference on Robotics and Automation (2004)

  7. Lulu, L., Elnagar, A.: A comparative study between visibility-based roadmap path planning algorithms. 4–9

  8. Kim, J.: Real-time obstacle avoidance using harmonic potential functions *. 1–28 (1992)

  9. Patle, B.K., Parhi, D.R.K., Jagadeesh, A., Kashyap, S.K.: Matrix-Binary Codes based Genetic Algorithm for path planning of mobile robot R. Comput. Electr. Eng. (2017). https://doi.org/10.1016/j.compeleceng.2017.12.011

  10. Abiyev, R.; Ibrahim, D.; Erin, B.: Advances in Engineering Software Navigation of mobile robots in the presence of obstacles. Adv. Eng. Softw. 41, 1179–1186 (2010). https://doi.org/10.1016/j.advengsoft.2010.08.001

    Article  MATH  Google Scholar 

  11. Abdel, M.; Jaradat, K.; Al-rousan, M.; Quadan, L.: Robotics and Computer-Integrated Manufacturing Reinforcement based mobile robot navigation in dynamic environment. Robot. Comput. Integr. Manuf. 27, 135–149 (2011). https://doi.org/10.1016/j.rcim.2010.06.019

    Article  Google Scholar 

  12. Li, Q.; Song, Y.; Hou, Z.: Neurocomputing Neural network based FastSLAM for autonomous robots in unknown environments. Neurocomputing 165, 99–110 (2015). https://doi.org/10.1016/j.neucom.2014.06.095

    Article  Google Scholar 

  13. Abubaker, A.: A Novel Mobile Robot Navigation System Using Neuro-Fuzzy Rule-Based Optimization Technique. 4, 2577–2583 (2012)

  14. Patle, B.K.; Pandey, A.; Jagadeesh, A.; Parhi, D.R.: Path planning in uncertain environment by using firefly algorithm. Def. Technol. (2018). https://doi.org/10.1016/j.dt.2018.06.004

    Article  Google Scholar 

  15. Phon-amnuaisuk, A.A.S.: Applying area extension PSO in robotic swarm. 253–285 (2010). https://doi.org/10.1007/s10846-009-9374-2

  16. Guan-zheng, T.A.N.: Ant colony system algorithm for real-time globally optimal path planning of mobile robots.

  17. Hossain, A., Ferdous, I.: Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique. 64, 137–141 (2015)

  18. HadiAbbas, N.; Mahdi Ali, F.: Path Planning of an Autonomous Mobile Robot using Directed Artificial Bee Colony Algorithm. Int. J. Comput. Appl. 96, 11–16 (2014). https://doi.org/10.5120/16836-6681

    Article  Google Scholar 

  19. Mohanty, P.K., Parhi, D.R.: Optimal path planning for a mobile robot using cuckoo search algorithm. 3079, (2016). https://doi.org/10.1080/0952813X.2014.971442

  20. Dugarjav, B.; Lee, S.G.; Kim, D.; Kim, J.H.; Chong, N.Y.: Scan matching online cell decomposition for coverage path planning in an unknown environment. Int. J. Precis. Eng. Manuf. 14, 1551–1558 (2013). https://doi.org/10.1007/s12541-013-0209-5

    Article  Google Scholar 

  21. Takahashi, O.; Schilling, R.J.: Motion Planning in a Plane Using Generalized Voronoi Diagrams. IEEE Trans. Robot. Autom. (1989). https://doi.org/10.1109/70.88035

    Article  Google Scholar 

  22. Mitchell, J.S.B.: An algorithmic approach to some problems in terrain navigation. Artif. Intell. (1988). https://doi.org/10.1016/0004-3702(88)90054-9

    Article  MATH  Google Scholar 

  23. Weigl, M.; Siemiaatkowska, B.; Sikorski, K.A.; Borkowski, A.: Grid-based mapping for autonomous mobile robot. Rob. Auton. Syst. (1993). https://doi.org/10.1016/0921-8890(93)90004-V

    Article  Google Scholar 

  24. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings - IEEE International Conference on Robotics and Automation (1985)

  25. Samsudin, K., Ahmad, F.A., Mashohor, S.: A highly interpretable fuzzy rule base using ordinal structure for obstacle avoidance of mobile robot. In: Applied Soft Computing Journal (2011)

  26. Singh, M.K., Parhi, D.R.: Intelligent neuro-controller for navigation of mobile robot. In: Proceedings of the International Conference on Advances in Computing, Communication and Control, ICAC3’09 (2009)

  27. Rusdinar, A.; Kim, J.; Lee, J.; Kim, S.: Implementation of real-time positioning system using extended Kalman filter and artificial landmark on ceiling. J. Mech. Sci. Technol. (2012). https://doi.org/10.1007/s12206-011-1251-9

    Article  Google Scholar 

  28. Raja, P., Pugazhenthi, S.: Path planning for mobile robots in dynamic environments using particle swarm optimization. In: ARTCom 2009 - International Conference on Advances in Recent Technologies in Communication and Computing (2009)

  29. Mo, H.; Xu, L.: Research of biogeography particle swarm optimization for robot path planning. Neurocomputing (2015). https://doi.org/10.1016/j.neucom.2012.07.060

    Article  Google Scholar 

  30. Wang, J., Zhang, Y., Xia, L.: Adaptive genetic algorithm enhancements for path planning of mobile robots. In: 2010 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2010 (2010)

  31. Shi, P., Cui, Y.: Dynamic path planning for mobile robot based on genetic algorithm in unknown environment. In: 2010 Chinese Control and Decision Conference, CCDC 2010 (2010)

  32. Wang, Y., Sillitoe, I.P.W., Mulvaney, D.J.: Mobile robot path planning in dynamic environments. In: Proceedings - IEEE International Conference on Robotics and Automation (2007)

  33. Martínez-Alfaro, H.; Gómez-García, S.: Mobile robot path planning and tracking using simulated annealing and fuzzy logic control. Expert Syst. Appl. (1998). https://doi.org/10.1016/s0957-4174(98)00055-4

    Article  Google Scholar 

  34. Liu, C., Gao, Z., Zhao, W.: A new path planning method based on firefly algorithm. In: Proceedings of the 2012 5th International Joint Conference on Computational Sciences and Optimization, CSO 2012 (2012)

  35. Chen, X.; Kong, Y.; Fang, X.; Wu, Q.: A fast two-stage ACO algorithm for robotic path planning. Neural Comput. Appl. (2013). https://doi.org/10.1007/s00521-011-0682-7

    Article  Google Scholar 

  36. Parhi, D.R., Pothal, J.K.: Intelligent navigation of multiple mobile robotsusing an ant colony optimization techniquein a highly cluttered environment. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2011). https://doi.org/10.1177/09544062JMES2005

  37. Reshamwala, A., P, D.: Robot Path Planning using An Ant Colony Optimization Approach: A Survey. Int. J. Adv. Res. Artif. Intell. (2013). https://doi.org/10.14569/ijarai.2013.020310

  38. Cao, J.: Robot Global Path Planning Based on an Improved Ant Colony Algorithm. J. Comput. Commun. (2016). https://doi.org/10.4236/jcc.2016.42002

    Article  Google Scholar 

  39. Singh, N.H.; Thongam, K.: Mobile Robot Navigation Using MLP-BP Approaches in Dynamic Environments. Arab. J. Sci. Eng. (2018). https://doi.org/10.1007/s13369-018-3267-2

    Article  Google Scholar 

  40. Masehian, E., Sedighizadeh, D.: A multi-objective PSO-based algorithm for robot path planning. In: Proceedings of the IEEE International Conference on Industrial Technology (2010)

  41. Juang, C.F.; Chang, Y.C.: Evolutionary-group-based particle-swarm-optimized fuzzy controller with application to mobile-robot navigation in unknown environments. IEEE Trans. Fuzzy Syst. (2011). https://doi.org/10.1109/TFUZZ.2011.2104364

    Article  Google Scholar 

  42. Mohamed, A.Z., Lee, S.H., Hsu, H.Y.: Autonomous mobile robot system concept based on PSO path planner and vSLAM. In: Proceedings - 2011 IEEE International Conference on Computer Science and Automation Engineering, CSAE 2011 (2011)

  43. Mohamed, A.Z.; Lee, S.H.; Hsu, H.Y.; Nath, N.: A faster path planner using accelerated particle swarm optimization. Artif. Life Robot. (2012). https://doi.org/10.1007/s10015-012-0051-3

    Article  Google Scholar 

  44. Zhang, Y.; Gong, D.W.; Zhang, J.H.: Robot path planning in uncertain environment using multi-objective particle swarm optimization. Neurocomputing (2013). https://doi.org/10.1016/j.neucom.2012.09.019

    Article  Google Scholar 

  45. Das, P.K.; Behera, H.S.; Panigrahi, B.K.: A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning. Swarm Evol. Comput. (2016). https://doi.org/10.1016/j.swevo.2015.10.011

    Article  Google Scholar 

  46. Paikray, H.K.; Das, P.K.; Panda, S.: Optimal Multi-robot Path Planning Using Particle Swarm Optimization Algorithm Improved by Sine and Cosine Algorithms. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-020-05046-9

    Article  Google Scholar 

  47. Akay, B.; Karaboga, D.: A modified Artificial Bee Colony algorithm for real-parameter optimization. Inf. Sci. (Ny). (2012). https://doi.org/10.1016/j.ins.2010.07.015

    Article  MATH  Google Scholar 

  48. Kang, F.; Li, J.; Xu, Q.: Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput. Struct. (2009). https://doi.org/10.1016/j.compstruc.2009.03.001

    Article  Google Scholar 

  49. Karaboga, D., Basturk, B.: Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2007)

  50. Karaboga, N.: A new design method based on artificial bee colony algorithm for digital IIR filters. J. Franklin Inst. (2009). https://doi.org/10.1016/j.jfranklin.2008.11.003

    Article  MathSciNet  MATH  Google Scholar 

  51. Karaboga, D.; Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. J. (2008). https://doi.org/10.1016/j.asoc.2007.05.007

    Article  MATH  Google Scholar 

  52. Liang, J.H.; Lee, C.H.: Efficient collision-free path-planning of multiple mobile robots system using efficient artificial bee colony algorithm. Adv. Eng. Softw. (2015). https://doi.org/10.1016/j.advengsoft.2014.09.006

    Article  Google Scholar 

  53. Fogel, L.J.: Intelligence through simulated evolution : forty years of evolutionary programming. (1999)

  54. Contreras-Cruz, M.A.; Ayala-Ramirez, V.; Hernandez-Belmonte, U.H.: Mobile robot path planning using artificial bee colony and evolutionary programming. Appl. Soft Comput. 30, 319–328 (2015). https://doi.org/10.1016/j.asoc.2015.01.067

    Article  Google Scholar 

  55. Faridi, A.Q.; Sharma, S.; Shukla, A.; Tiwari, R.; Dhar, J.: Multi-robot multi-target dynamic path planning using artificial bee colony and evolutionary programming in unknown environment. Intell. Serv. Robot. (2018). https://doi.org/10.1007/s11370-017-0244-7

    Article  Google Scholar 

  56. Karaboga, D.: An idea based on Honey Bee Swarm for Numerical Optimization. Tech. Rep. TR06, Erciyes Univ. (2005)

  57. Lee, C.; Yao, X.: Based on the Lévy Probability. Distribution 8, 1–13 (2004)

    Google Scholar 

  58. Xiao, J.; Michalewicz, Z.; Zhang, L.; Trojanowski, K.: Adaptive evolutionary planner/navigator for mobile robots. IEEE Trans. Evol. Comput. (1997). https://doi.org/10.1109/4235.585889

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. All relevant data are within the paper. No funding was received for carrying out this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Sikander, A. Optimum Mobile Robot Path Planning Using Improved Artificial Bee Colony Algorithm and Evolutionary Programming. Arab J Sci Eng 47, 3519–3539 (2022). https://doi.org/10.1007/s13369-021-06326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06326-8

Keywords

Navigation