Skip to main content

Advertisement

Log in

Optimal Multi-robot Path Planning Using Particle Swarm Optimization Algorithm Improved by Sine and Cosine Algorithms

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper highlights a new approach to generate an optimal collision-free trajectory path for each robot in a cluttered and unknown workspace using enhanced particle swarm optimization (IPSO) with sine and cosine algorithms (SCAs). In the current work, PSO has enhanced with the notion of democratic rule in human society and greedy strategy for selecting the optimal position in the successive iteration using sine and cosine algorithms. The projected algorithm mainly emphasizes to produce a deadlock-free successive location of every robot from their current location, preserve a good equilibrium between diversification and intensification, and minimize the path distance for each robot. Results achieved from IPSO–SCA have equated with those developed by IPSO and DE in the same workspace to authenticate the efficiency and robustness of the suggested approach. The outcomes of the simulation and real platform result reveal that IPSO–SCA is superior to IPSO and DE in the form of producing an optimal collision-free path, arrival time, and energy utilization during travel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kamil, F.; et al.: A review on motion planning and obstacle avoidance approaches in dynamic environments. Adv. Robot. Autom. 4(2), 134–142 (2015)

    Google Scholar 

  2. Qu, Y.; et al.: Analyzing crowd dynamic characteristics of boarding and alighting process in urban metro stations. Phys. A 526, 121075 (2019)

    Article  Google Scholar 

  3. Saicharan, B.; Tiwari, R.; Roberts, N.: Multi Objective optimization based Path Planning in robotics using nature inspired algorithms: a survey. In: 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES). IEEE (2016)

  4. Das, P.K.; Behera, H.S.; Das, S.; Tripathy, H.K.; Panigrahi, B.K.; Pradhan, S.K.: A hybrid improved PSO-DV algorithm for multi-robot path planning in a clutter environment. Neurocomputing 207, 735–753 (2016)

    Article  Google Scholar 

  5. Galceran, Enric; Carreras, Marc: A survey on coverage path planning for robotics. Robotics and Autonomous systems 61(12), 1258–1276 (2013)

    Article  Google Scholar 

  6. Zhang, Yong; Gong, Dun-Wei; Zhang, Jian-Hua: Robot path planning in uncertain environment using multi-objective particle swarm optimization. Neurocomputing 103, 172–185 (2013)

    Article  Google Scholar 

  7. Kumar, P.B.; Sahu, C.; Parhi, D.R.: A hybridized regression-adaptive ant colony optimization approach for navigation of humanoids in a cluttered environment. Appl. Soft Comput. 68, 565–585 (2018)

    Article  Google Scholar 

  8. Singh, N.H.; Thongam, K.: Neural network-based approaches for mobile robot navigation in static and moving obstacles environments. Intell. Serv. Robot. 12(1), 55–67 (2019)

    Article  Google Scholar 

  9. Tu, E.; et al.: Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology. IEEE Trans. Intell. Transp. Syst. 19(5), 1559–1582 (2017)

    Article  Google Scholar 

  10. Das, P.K.; Behera, H.S.; Jena, P.K.; Panigrahi, B.K.: Multi-robot path planning in a dynamic environment using improved gravitational search algorithm. J. Electr. Syst. Inf. Technol. 3(2), 295–313 (2016)

    Article  Google Scholar 

  11. Das, P.K.; Behera, H.S.; Panigrahi, B.K.: A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning. Swarm Evol. Comput. 28, 14–28 (2016)

    Article  Google Scholar 

  12. Song, Baoye; Wang, Zidong; Zou, Lei: On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm. Cogn. Comput. 9(1), 5–17 (2017)

    Article  Google Scholar 

  13. Purcaru, C.; et al.: Hybrid PSO-GSA robot path planning algorithm in static environments with danger zones. In: 2013 17th International Conference on System Theory, Control and Computing (ICSTCC). IEEE (2013)

  14. Shahnazar, A.; et al.: A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model. Environ. Earth Sci. 76(15), 527 (2017)

    Article  Google Scholar 

  15. Tanweer, M.R.; Suresh, S.; Sundararajan, N.: Self regulating particle swarm optimization algorithm. Inf. Sci. 294, 182–202 (2015)

    Article  MathSciNet  Google Scholar 

  16. Shukla, S.; Shukla, N.K.; Sachan, V.K.: Multi Robot Path Planning Parameter Analysis Based on Particle Swarm Optimization (PSO) in an Intricate Unknown Environments. In: 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), vol. 1. IEEE (2019)

  17. Nazarahari, Milad; Khanmirza, Esmaeel; Doostie, Samira: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm. Expert Syst. Appl. 115, 106–120 (2019)

    Article  Google Scholar 

  18. Das, P.K.; Behera, H.S.; Panigrahi, B.K.: A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning. Swarm Evol. Comput. 1(28), 14–28 (2016)

    Article  Google Scholar 

  19. Wang, X.; Shi, Y.; Ding, D.; Gu, X.: Double global optimum genetic algorithm–particle swarm optimization-based welding robot path planning. Eng. Optim. 48(2), 299–316 (2016)

    Article  MathSciNet  Google Scholar 

  20. Das, P.K.; Behera, H.S.; Panigrahi, B.K.: Intelligent-based multi-robot path planning inspired by improved classical Q-learning and improved particle swarm optimization with perturbed velocity. Int. J. Eng. Sci. Technol. 19(1), 651–669 (2016)

    Google Scholar 

  21. Prajapati, A.; Chhabra, J.K.: A particle swarm optimization-based heuristic for software module clustering problem. Arab. J. Sci. Eng. 43(12), 7083–7094 (2018)

    Article  Google Scholar 

  22. Burman, R.; Chakrabarti, S.; Das, S.: Democracy-inspired particle swarm optimizer with the concept of peer groups. Soft. Comput. 21(12), 3267–3286 (2017)

    Article  Google Scholar 

  23. Moslah, O.; Hachaïchi, Y.; Lahbib, Y.: Democratic inspired particle swarm optimization for multi-robot exploration task (2016)

  24. Das, P.K.; Jena, P.K.: Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators. Appl. Soft Comput. 2020, 106312 (2020)

    Article  Google Scholar 

  25. Zhan, Z.; Zhang, J.; Li, Y.; Chung, H.S.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B 39(6), 1362–1381 (2009)

    Article  Google Scholar 

  26. Ratnaweera, A.; Halgamuge, S.K.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficient. IEEE Trans. Evol. Comput. 83, 240–255 (2004)

    Article  Google Scholar 

  27. Kundu, R.; Mukherjee, R.; Das, S.: Modified particle swarm optimization with switching update strategy. In: Proceedings of the International Conference on Swarm, Evolutionary, and Memetic Computing. Springer, Berlin, Heidelberg, pp. 644–652 (2012)

  28. Del Valle, Y.; et al.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)

    Article  Google Scholar 

  29. Mahmoodabadi, M.J.; Mottaghi, Z.S.; Bagheri, A.: HEPSO: high exploration particle swarm optimization. Inf. Sci. 273, 101–111 (2014)

    Article  MathSciNet  Google Scholar 

  30. Liang, J.J.; et al.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  31. Shi, Yuhui; Eberhart, Russell C.: Parameter selection in particle swarm optimization. International Conference on Evolutionary Programming. Springer Berlin Heidelberg, Berlin (1998)

    Google Scholar 

  32. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 15(96), 120–133 (2016)

    Article  Google Scholar 

  33. Issa, M.; Hassanien, A.E.; Oliva, D.; Helmi, A.; Ziedan, I.; Alzohairy, A.: ASCA-PSO: adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment. Expert Syst. Appl. 99, 56–70 (2018)

    Article  Google Scholar 

  34. Zhang, Jinhua; Zhuang, Jian; Haifeng, Du: Self-organizing genetic algorithm based tuning of PID controllers. Inf. Sci. 179(7), 1007–1018 (2009)

    Article  Google Scholar 

  35. Fakhouri, H.N.; Hudaib, A.; Sleit, A.: Hybrid particle swarm optimization with sine cosine algorithm and Nelder-Mead simplex for solving engineering design problems. Arab. J. Sci. Eng. 2020, 1–19 (2020)

    Google Scholar 

  36. Alitappeh, R.J.; Jeddisaravi, K.; Guimarães, F.G.: Multi-objective multi-robot deployment in a dynamic environment. Soft. Comput. 21(21), 6481–6497 (2017)

    Article  Google Scholar 

  37. Yu, J.; Rus, D.: An effective algorithmic framework for near optimal multi-robot path planning. In: Robotics Research, pp. 495–511. Springer, Cham (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paikray, H.K., Das, P.K. & Panda, S. Optimal Multi-robot Path Planning Using Particle Swarm Optimization Algorithm Improved by Sine and Cosine Algorithms. Arab J Sci Eng 46, 3357–3381 (2021). https://doi.org/10.1007/s13369-020-05046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05046-9

Keywords

Navigation