Skip to main content
Log in

Investigation of Surface Settlement and Wall Deflection Caused by Braced Excavation in Spatially Variable Clays Based on Anisotropic Random Fields

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This research aims to assess the influences of the spatial variability of soil parameters on the ground surface and retaining wall deformation induced by braced excavation. A series of anisotropic random fields are generated and used for the finite difference analysis in this paper. A procedure for automating the Monte Carlo simulation is employed to ascertain the influences of coefficient of variation and scale of fluctuation (SOF) of soil stiffness parameters on the excavation-induced responses. In addition, the effects of horizontal SOF and vertical SOF are distinguished in the anisotropic framework. The stochastic results indicate that the presented computational framework is effective in the investigation of excavation-induced deformations. Further probabilistic analyses are performed to evaluate the failure probabilities of surface settlement (SS) and retaining wall deflection (RWD). This study shows the importance of addressing the spatial variability of stiffness parameters for soil and structure problems. A series of modes for SS and RWD are presented with consideration of the effects of weak stiffness regions. The effects of vertical SOF on excavation-induced deformations are larger than those of horizontal SOF. The concept of vertical SOF correlation is proposed to explain that the most scattered result occurs when the vertical SOF is close to the size of the excavation. The research can provide a beneficial reference for advance warning of failure or hazard when performing probabilistic assessment of excavation-induced deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

SS:

Surface settlement

RWD:

Retaining wall deflection

SLS:

Serviceability limit state

SOF, SOFs:

Scale of fluctuation

COV, COVs:

Coefficients of variability

PH-SS model:

The plastic hardening-small-strain model

CMDM:

The covariance matrix decomposition method

ACF:

Auto-correlation function

MCS:

Monte Carlo simulation

LSF:

The limit state function

RFDM:

Random finite difference method

F s :

The factor of safety against basal heave

q a :

The asymptotic value of the deviatoric stress

q :

The deviatoric stress

E i :

The initial soil Young’s modulus at a very low-strain (< 10−6)

G 0 :

The initial or very small-strain shear modulus

G :

The shear modulus

γ 0 .7 :

The shear strain at which G = 0.7G0

γ :

The shear strain

ε 1 :

The axial (vertical compressional) strain

\(E_{{{\text{oed}}}}^{{{\text{ref}}}}\) :

Tangent stiffness for primary oedometer loading (kN/m2)

\(E_{{50}}^{{{\text{ref}}}}\) :

Secant stiffness in standard drained triaxial test (kN/m2)

\(E_{{{\text{ur}}}}^{{{\text{ref}}}}\) :

Unloading/reloading stiffness at engineering strains (kN/m2)

\(G_{0}^{{{\text{ref}}}}\) :

Reference shear modulus at very small strains (< 10−6) (kN/m2)

φ′:

Effective angle of internal friction (°)

c′:

Effective cohesion (kN/m2)

υ :

Poisson’s ratio

m :

Exponent of the stress-dependency of stiffness

p ref :

Reference stress for stiffnesses (kN/m2)

τ x :

The absolute distance between any two spatial points in the horizontal direction (m)

τ z :

The absolute distance between any two spatial points in the vertical direction (m)

θ x :

The horizontal SOFs (m)

θ z :

The vertical SOFs (m)

\(\rho \left( {\tau _{x} ,\tau _{z} } \right)\) :

The auto-correlation coefficient between any two spatial points

C n × n :

The auto-correlation matrix

L :

A lower triangular matrix

L T :

The transpose of the matrix L

Y :

A randomly generated vector

P f :

The probability of failure

Z :

The limit state function (LSF)

S sto :

The response of stochastic calculation

S lim :

The limiting value of the corresponding response

N :

The number of MCSs

I[–]:

The indicator function. When Z < 0, I[–] is 1, otherwise zero

K n :

The normal stiffness (kN/m2)

K s :

The shear stiffness (kN/m2)

K :

The average value of the soil bulk stiffness (kN/m2)

G :

The average value of the soil shear stiffness (kN/m2)

Δz :

The element size on the low-stiffness side in the adjacent soil element

H :

The final depth of excavation (m)

B :

The half-width of excavation (m)

μ ln :

Mean of the lognormal distribution

σ ln :

Standard deviation of the lognormal distribution

μ :

Mean of the normal distribution

σ :

Standard deviation of the normal distribution

δ vm/H :

The dimensionless parameter for maximum SS

δ hm/H :

The dimensionless parameter for maximum RWD

References

  1. Kung, G.T.C.; Hsiao, E.C.L.; Schuster, M.; Juang, C.H.: A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays. Comput. Geotech. 34(5), 385–396 (2007)

    Article  Google Scholar 

  2. PSCG.: Specification for excavation in Shanghai metro construction. Shanghai, China: Professional Standards Compilation Group (2000)

  3. Zheng, G.; Yang, X.; Zhou, H.; Du, Y.; Sun, J.; Yu, X.: A simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations. Comput. Geotech. 95(3), 119–128 (2018)

    Article  Google Scholar 

  4. Kung, G.T.C.; Juang, C.H.; Hsiao, E.C.L.; Hashash, Y.M.A.: Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays. J. Geotech. Geoenviron. Eng. 133(6), 731–747 (2007)

    Article  Google Scholar 

  5. Zhang, W.G.; Goh, A.T.C.; Xuan, F.: A simple prediction model for wall deflection caused by braced excavation in clays. Comput. Geotech. 63, 67–72 (2015)

    Article  Google Scholar 

  6. Morgenstern, N.R.: Performance in geotechnical practice. HKIE Transactions 7(2), 2–15 (2000)

    Article  Google Scholar 

  7. Lumb, P.: The variability of natural soils. Can. Geotech. J. 3(2), 74–97 (2011)

    Article  Google Scholar 

  8. Vanmarcke, E.H.: Probabilistic modeling of soil profiles. J. Geotech. Eng. Div. 103, 1227–12446 (1977)

    Article  Google Scholar 

  9. Fenton, G.A.; Griffiths, D.V.: Three-dimensional probabilistic foundation settlement. J. Geotech. Geoenviron. Eng. 131(2), 232–239 (2005)

    Article  Google Scholar 

  10. Cheng, H.Z.; Chen, J.; Li, J.B.: Probabilistic Analysis of Ground Movements Caused by Tunneling in a Spatially Variable Soil. Int. J. Geomech. 19(12), 04019125 (2019)

    Article  Google Scholar 

  11. Griffiths, D.V.; Asce, F.; Huang, J.S.; Asce, M.; Fenton, G.A.: Influence of spatial variability on slope reliability using 2D random fields. J. Geotech. Geoenviron. Eng. 135(10), 1367–1378 (2009)

    Article  Google Scholar 

  12. Cheng, H.Z.; Chen, J.; Chen, R.P.; Chen, G.L.; Zhong, Y.: Risk assessment of slope failure considering the variability in soil properties. Comput. Geotech. 103, 61–72 (2018)

    Article  Google Scholar 

  13. Luo, Z.; Li, Y.; Zhou, S.; Di, H.: Effects of vertical spatial variability on supported excavations in sands considering multiple geotechnical and structural failure modes. Comput. Geotech. 95, 16–29 (2018)

    Article  Google Scholar 

  14. Ching, J.Y.; Phoon, K.K.; Sung, S.P.: Worst case scale of fluctuation in basal heave analysis involving spatially variable clays. Struct. Saf. 68, 28–42 (2017)

    Article  Google Scholar 

  15. Gholampour, A.; Johari, A.: Reliability-based analysis of braced excavation in unsaturated soils considering conditional spatial variability. Comput. Geotech. 115, 103163 (2019)

    Article  Google Scholar 

  16. Sert, S.; Luo, Z.; Xiao, J.; Gong, W.; Juang, C.H.: Probabilistic analysis of responses of cantilever wall-supported excavations in sands considering vertical spatial variability. Comput Geotech. 75, 182–191 (2016)

    Article  Google Scholar 

  17. Lo, M.K.; Leung, Y.F.: Bayesian updating of subsurface spatial variability for improved prediction of braced excavation response. Can. Geotech. J. 56(8), 1169–1183 (2019)

    Article  Google Scholar 

  18. Phoon, K.K.; Kulhawy, F.H.: Evaluation of geotechnical property variability. Can Geotech J. 129(4), 625–639 (1999)

    Article  Google Scholar 

  19. Phoon, K.K.; Kulhawy, F.H.: Characterization of geotechnical variability. Can. Geotech. J. 36(4), 612–624 (1999)

    Article  Google Scholar 

  20. El-Ramly, H.; Morgenstern, N.R.; Cruden, D.M.: Probabilistic stability analysis of a tailings dyke on presheared clay-shale. Can. Geotech. J. 40(1), 192–208 (2003)

    Article  Google Scholar 

  21. Zhang, W.G.; Li, Y.Q.; Wu, C.Z.; Li, H.R.; Goh, A.T.C.; Liu, H.L.: Prediction of lining response for twin tunnels constructed in anisotropic clay using machine learning techniques. Undergr. Space (2020)

  22. Li, Y.Q.; Zhang, W.G.: Investigation on passive pile responses subject to adjacent tunnelling in anisotropic clay. Comput. Geotech. 127(3), 103782 (2020)

    Article  Google Scholar 

  23. Zhang, W.G.; Han, L.; Gu, X.; Wang, L.; Chen, F.Y.; Liu, H.L.: Tunneling and deep excavations in spatially variable soil and rock masses: A short review. Undergr. Space (2020)

  24. Teng, F.C.; Ou, C.Y.; Hsieh, P.G.: Measurements and numerical simulations of inherent stiffness anisotropy in soft Taipei clay. J. Geotech. Geoenviron. Eng. 140(1), 237–250 (2014)

    Article  Google Scholar 

  25. Grimstad, G.; Andresen, L.: Jostad HP NGI-ADP: anisotropic shear strength model for clay. Int. J. Numer. Anal. Methods Geomech. 36, 483–497 (2012)

    Article  Google Scholar 

  26. Chen, G.H.; Zou, J.F.; Chen, J.Q.: Shallow tunnel face stability considering pore water pressure in non-homogeneous and anisotropic soils. Comput. Geotech. 116, 103205 (2019)

    Article  Google Scholar 

  27. Goh, A.T.C.; Zhang, R.H.; Wang, W.; Wang, L.; Liu, H.L.; Zhang, W.G.: Numerical study of the effects of groundwater drawdown on ground settlement for excavation in residual soils. Acta Geotech. (2019)

  28. Zhang, R.H.; Wu, C.Z.; Goh, A.T.C.; Thomas, B.; Zhang, W.G.: Estimation of diaphragm wall deflections for deep braced excavation in anisotropy clays using ensemble learning. Geosci. Front. (2020)

  29. Zhang, R.H.; Goh, A.T.C.; Li, Y.Q.; Hong, L.; Zhang, W.G.: Assessment of apparent earth pressure for braced excavations in anisotropic clay. Acta Geotech. 1–12 (2021)

  30. Zhang, W.G.; Zhang, R.H.; Wu, C.Z.; Goh, A.T.C.; Wang, L.: Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression. Undergr. Space (2020)

  31. Hsieh, P.G.; Ou, C.Y.; Liu, H.T.: Basal heave analysis of excavations with consideration of anisotropic undrained strength of clay. Can. Geotech. J. 45(6), 788–799 (2008)

    Article  Google Scholar 

  32. Kong, D.S.; Men, Y.Q.; Wang, L.H.; Zhang, Q.H.: Basal heave stability analysis of deep foundation pits in anisotropic soft clays. J. Cent. S. Univ. 43(11), 4472–4476 (2012)

    Google Scholar 

  33. Puzrin, A.M.; Burland, J.B.: Non-linear model of small-strain behavior of soils. Geotechnique 48(2), 217–233 (1998)

    Article  Google Scholar 

  34. Burland, J.B.: Small is beautiful-the stiffness of soils at small strains. Can. Geotech. J. 26, 499–516 (1989)

    Article  Google Scholar 

  35. Benz, T.: Small-Strain Stiffness of Soils and Its Numerical Consequences. PhD thesis, Universität Stuttgart (2007)

  36. Schweiger, H.F.; Vermeer, P.A.; Wehnert, M.: On the design of deep excavations based on finite element analysis. Geomech. Tunnell. 2(4), 333–344 (2009)

    Article  Google Scholar 

  37. Jin, Y.F.; Yin, Z.Y.; Zhou, W.H.; Huang, H.W.: Multi-objective optimization-based updating of predictions during excavation. Eng. Appl. Artif. Intell. 78, 102–123 (2019)

    Article  Google Scholar 

  38. Zhang, D.M.; Xie, X.C.; Li, Z.L.; Zhang, J.: Simplified analysis method for predicting the influence of deep excavation on existing tunnels. Comput. Geotech. 121, 103477 (2020)

    Article  Google Scholar 

  39. FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions), Version 6.0, User manual. USA: ltasca Consulting Group, Inc (2017)

  40. Wang, W.D.; Wang, H.R.; Xu, Z.H.: Study of parameters of HS-small model used in numerical analysis of excavations in Shanghai area. Rock Soil Mech. 83(5), 413–419 (2013)

    Google Scholar 

  41. Davis, M.W.: Production of conditional simulations via the LU triangular decomposition of the covariance matrix. Math. Geol. 19(2), 91–98 (1987)

    Google Scholar 

  42. Fenton, G.A.; Griffiths, D.V.: Probabilistic foundation settlement on spatially random soil. J. Geotech. Geoenviron. Eng. 128(5), 381–390 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos 51909259, 52079135, and 52008122), the International Partnership Program of Chinese Academy of Sciences (Grant No. 131551KYSB20180042), the Science and Technology R & D Project of China State Construction International Holdings Limited (No. CSCI-2020-Z-21), and Ningbo Public Welfare Science and Technology Planning Project (No. 2019C50012). The authors are also grateful to the reviewers and editors for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, S., Chen, J., Huang, J. et al. Investigation of Surface Settlement and Wall Deflection Caused by Braced Excavation in Spatially Variable Clays Based on Anisotropic Random Fields. Arab J Sci Eng 47, 4059–4077 (2022). https://doi.org/10.1007/s13369-021-05853-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05853-8

Keywords

Navigation