Skip to main content

Advertisement

Log in

Performance and Durability of Cellulose Pulp-Reinforced Extruded Earth-based Composites

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study aimed to investigate the influence of two alternative cellulosic materials: bamboo organosolv pulp and recycled waste carton pulp, on the flexural strength, fracture toughness, drying shrinkage, and durability of extruded earth-based building materials by varying the reinforcement content at 5, 7.5, and 10 wt%. The results show the flexural strength and fracture toughness achieved by the inclusion of carton pulp were between the range of 2.87–3.20 MPa and 4.22–4.52 MPa.m0.5, respectively, while the introduction of bamboo pulp gave 2.04–2.20 MPa and 3.76–4.05 MPa.m0.5, respectively. Compared with the unreinforced material, composite reinforced with 5 wt% of recycled waste carton pulp significantly enhanced flexural strength (61%), specific energy (416%), and fracture toughness (57%), while increasing the drying shrinkage (81%) and water absorption (38%) and decreasing the bulk density (15%) of earth-based matrix. Although the addition of cellulose pulp in soil matrix increased the drying shrinkage due to the high absorption capacity of pulp fibre, it decreased the wearing percentage and the shrinkage cracking of the composite which contributed to an improvement in the durability of the earth-based material. The repeated drying shrinkage test led to an improvement in the dimension stability at 87%, 83%, 85%, and 82% for 0, 5, 7.5, and 10 wt% of recycled pulp composite, respectively. Cellulose fibre reacts as crack arrester during loading and shrinkage, improves the durability, and provides a lightweight earth wall material for insulation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Marques, R.C.; Da Cruz, N.F.; Simões, P.; Faria Ferreira, S.; Pereira, M.C.; De Jaeger, S.: Economic viability of packaging waste recycling systems: a comparison between Belgium and Portugal. Resour. Conserv. Recycl. 85, 22–33 (2014). https://doi.org/10.1016/j.resconrec.2013.12.015

    Article  Google Scholar 

  2. Ibáñez-Forés, V.; Coutinho-Nóbrega, C.; Bovea, M.D.; de Mello-Silva, C.; Lessa-Feitosa-Virgolino, J.: Influence of implementing selective collection on municipal waste management systems in developing countries: a Brazilian case study. Resour. Conserv. Recycl. 134(March), 100–111 (2018). https://doi.org/10.1016/j.resconrec.2017.12.027

    Article  Google Scholar 

  3. Bentchikou, M.; Guidoum, A.; Scrivener, K.; Silhadi, K.; Hanini, S.: Effect of recycled cellulose fibres on the properties of lightweight cement composite matrix. Constr. Build. Mater. 34, 451–456 (2012). https://doi.org/10.1016/j.conbuildmat.2012.02.097

    Article  Google Scholar 

  4. Soroushian, P.; Shah, Z.: Reinforcement of Thin Cement Products with Recycled Wastepaper Fibers. Michigan State University (1993)

    Google Scholar 

  5. Marikunte, S.; Soroushian, P.: Statistical evaluation of long-term durability characteristics of cellulose fiber reinforced cement composites. Mater. J. 91(6), 607–616 (1995)

    Google Scholar 

  6. Soroushian, P.; Shah, Z.; Won, J.P.: Aging effects on the structure and properties of recycled wastepaper fiber cement composites. Mater. Struct. Constr. 29(189), 312–317 (1996). https://doi.org/10.1007/bf02486366

    Article  Google Scholar 

  7. Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F.: What a waste 2.0: a global snapshot of solid waste management to 2050. The World Bank (2018)

  8. Karade, S.R.: Cement-bonded composites from lignocellulosic wastes. Constr. Build. Mater. 24(8), 1323–1330 (2010). https://doi.org/10.1016/j.conbuildmat.2010.02.003

    Article  Google Scholar 

  9. Savastano, H., Jr.; Warden, P.G.; Coutts, R.S.P.: Mechanically pulped sisal as reinforcement in cementitious matrices. Cem. Concr. Compos. 25(3), 311–319 (2003)

    Article  Google Scholar 

  10. Savastano, H.; Warden, P.G.; Coutts, R.S.P.: Evaluation of pulps from natural fibrous material for use as reinforcement in cement product. Mater. Manuf. Process. 19(5), 963–978 (2004). https://doi.org/10.1081/AMP-200030684

    Article  Google Scholar 

  11. Ferrara, L.; Ferreira, S.R.; della Torre, M.; Krelani, V.; de Silva, F.A.; Toledo Filho, R.D.: Effect of Cellulose Nanopulp on Autogenous and Drying Shrinkage of Cement Based Composites. In: Nanotechnology in construction, pp. 325–330. Springer (2015)

    Chapter  Google Scholar 

  12. Correia, V.D.; Curvelo, A.A.; Marabezi, K.; Almeida, A.E.; Savastano, Junior H.: Bamboo cellulosic pulp produced by the ethanol/water process for reinforcement applications. Ciênc. Florest. 25(1), 127–35 (2015)

    Article  Google Scholar 

  13. Correia, V.D.C.; Santos, S.F.; Mármol, G.; Curvelo, A.A.D.S.; Savastano, H.: Potential of bamboo organosolv pulp as a reinforcing element in fiber-cement materials. Constr. Build. Mater. 72, 65–71 (2014). https://doi.org/10.1016/j.conbuildmat.2014.09.005

    Article  Google Scholar 

  14. Santos, S.F.; Schmidt, R.; Almeida, A.E.F.S.; Tonoli, G.H.D.; Savastano, H.: Supercritical carbonation treatment on extruded fibre-cement reinforced with vegetable fibres. Cem. Concr. Compos. 56, 84–94 (2015). https://doi.org/10.1016/j.cemconcomp.2014.11.007

    Article  Google Scholar 

  15. Ballesteros, J.E.M.; Santos, S.F.; Mármol, G.; Savastano, H.; Fiorelli, J.: Evaluation of cellulosic pulps treated by hornification as reinforcement of cementitious composites. Constr. Build. Mater. 100, 83–90 (2015). https://doi.org/10.1016/j.conbuildmat.2015.09.044

    Article  Google Scholar 

  16. Tonoli, G.H.D.; Joaquim, A.P.; Arsne, M.A.; Bilba, K.; Savastano, H.: Performance and durability of cement based composites reinforced with refined sisal pulp. Mater. Manuf. Process. 22(2), 149–156 (2007). https://doi.org/10.1080/10426910601062065

    Article  Google Scholar 

  17. Ojo, E.B., et al.: Effects of fibre reinforcements on properties of extruded alkali activated earthen building materials. Constr. Build. Mater. 227, 116778 (2019). https://doi.org/10.1016/j.conbuildmat.2019.116778

    Article  Google Scholar 

  18. Muñoz, P.; Letelier, V.; Muñoz, L.; Bustamante, M.A.: Adobe bricks reinforced with paper & pulp wastes improving thermal and mechanical properties. Constr. Build. Mater. (2020). https://doi.org/10.1016/j.conbuildmat.2020.119314

    Article  Google Scholar 

  19. Ojo, E.; Fioroni, C.; Jr, H.S.: Durability of alkali activated clay based composites. In: 4th International Conference on Service Life Design for Infrastructures, No. August (2018)

  20. Manu, D.: Strength and durability properties of cow dung stabilised earth. Civ. Environ. Res. 3(13), 117–126 (2013)

    Google Scholar 

  21. Avirneni, D.; Peddinti, P.R.T.; Saride, S.: Durability and long term performance of geopolymer stabilized reclaimed asphalt pavement base courses. Constr. Build. Mater. 121, 198–209 (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.162

    Article  Google Scholar 

  22. Sivakumar, A.; Santhanam, M.: A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete. Cem. Concr. Compos. 29(7), 575–581 (2007). https://doi.org/10.1016/j.cemconcomp.2007.03.005

    Article  Google Scholar 

  23. Jiang, C.; Yang, Y.; Wang, Y.; Zhou, Y.; Ma, C.: Autogenous shrinkage of high performance concrete containing mineral admixtures under different curing temperatures. Constr. Build. Mater. 61, 260–269 (2014). https://doi.org/10.1016/j.conbuildmat.2014.03.023

    Article  Google Scholar 

  24. Walker, P.J.: Strength, durability and shrinkage characteristics of cement stabilised soil blocks. Cem. Concr. Compos. 9465(95), 301–310 (1995)

    Article  Google Scholar 

  25. Kampala, A.; Horpibulsuk, S.; Prongmanee, N.; Chinkulkijniwat, A.: Influence of wet-dry cycles on compressive strength of calcium carbide residue-fly ash stabilized clay. J. Mater. Civ. Eng. 26(4), 633–643 (2014). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000853

    Article  Google Scholar 

  26. Danso, H.; Martinson, D.B.; Ali, M.; Williams, J.B.: Physical, mechanical and durability properties of soil building blocks reinforced with natural fibres. Constr. Build. Mater. 101, 797–809 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.069

    Article  Google Scholar 

  27. Ghavami, K.; Toledo Filho, R.D.; Barbosa, N.P.: Behaviour of composite soil reinforced with natural fibres. Cem. Concr. Compos. 21(1), 39–48 (1999). https://doi.org/10.1016/S0958-9465(98)00033-X

    Article  Google Scholar 

  28. Bouhicha, M.; Aouissi, F.; Kenai, S.: Performance of composite soil reinforced with barley straw. Cem. Concr. Compos. 27(5), 617–621 (2005). https://doi.org/10.1016/j.cemconcomp.2004.09.013

    Article  Google Scholar 

  29. Sangma, S.; Tripura, D.D.: Experimental study on shrinkage behaviour of earth walling materials with fibers and stabilizer for cob building. Constr. Build. Mater. 256, 119449 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119449

    Article  Google Scholar 

  30. Horpibulsuk, S.: Strength and microstructure of cement stabilized clay. In: Scanning Electron Microscopy, IntechOpen (2012)

  31. Maskell, D.; Heath, A.; Walker, P.: Inorganic stabilisation methods for extruded earth masonry units. Constr. Build. Mater. 71, 602–609 (2014). https://doi.org/10.1016/j.conbuildmat.2014.08.094

    Article  Google Scholar 

  32. Khelifi, H.; Lecompte, T.; Perrot, A.; Ausias, G.: Mechanical enhancement of cement-stabilized soil by flax fibre reinforcement and extrusion processing. Mater. Struct. Constr. 49(4), 1143–1156 (2016). https://doi.org/10.1617/s11527-015-0564-z

    Article  Google Scholar 

  33. Stanislas, T.T., et al.: Production and characterization of pulp and nanofibrillated cellulose from selected tropical plants. J. Nat. Fibers 00(00), 1–17 (2020). https://doi.org/10.1080/15440478.2020.1787915

    Article  Google Scholar 

  34. Ballesteros, J.E.M.; dos Santos, V.; Mármol, G.; Frías, M.; Fiorelli, J.: Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications. Cellulose 24(5), 2275–2286 (2017)

    Article  Google Scholar 

  35. Ojo, E.B.; Mustapha, K.; Teixeira, R.S.; Savastano, H.; Savastano, H., Jr.: Development of unfired earthen building materials using muscovite rich soils and alkali activators. Case Stud. Constr. Mater. 11, e00262 (2019). https://doi.org/10.1016/j.cscm.2019.e00262

    Article  Google Scholar 

  36. Komadja, G.C., et al.: Assessment of stability of a Himalayan road cut slope with varying degrees of weathering: a finite-element-model-based approach. Heliyon (2020). https://doi.org/10.1016/j.heliyon.2020.e05297

    Article  Google Scholar 

  37. Ojo, E.B., et al.: Mechanical performance of fiber-reinforced alkali activated un-calcined earth-based composites. Constr. Build. Mater. 247, 118588 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118588

    Article  Google Scholar 

  38. Stanislas, T.T., et al.: Effect of cellulose pulp fibres on the physical, mechanical, and thermal performance of extruded earth-based materials. J Build Eng 39(July), 102259 (2021). https://doi.org/10.1016/j.jobe.2021.102259

    Article  Google Scholar 

  39. A. S. for Testing and Materials, “ASTM C 948-81: Standard Test Method for Dry and Wet Bulk Density, Water Absorption, and Apparent Porosity of Thin Sections of Glass-Fiber Reinforced Concrete (2009)

  40. Standard, A.: AS 1012.13: Determination of the Drying Shrinkage of Concrete for Samples Prepared in the Field or in the Laboratory. Standards Australia, Sydney (1992)

    Google Scholar 

  41. Giordano, B.L.; de Souza, R.B.; John, V.M.: Influência do ligante na retração por secagem em fibrocimento. Ambient. Construído 9(4), 7–16 (2009)

    Article  Google Scholar 

  42. Zweben, C.; Smith, W.S.; Wardle, M.W.: Test methods for fiber tensile strength, composite flexural modulus, and properties of fabric-reinforced laminates. In: Composite Materials: Testing and Design (Fifth Conference) (1979)

  43. ASTM E399 Standard: Standard test method for linear-elastic plane-strain fracture toughness KIC of metallic materials. ASTM International, West Conshohocken, PA (2012)

  44. Mustapha, K.; Annan, E.; Azeko, S.T.; Zebaze Kana, M.G.; Soboyejo, W.O.: Strength and fracture toughness of earth-based natural fiber-reinforced composites. J. Compos. Mater. 50(9), 1145–1160 (2016). https://doi.org/10.1177/0021998315589769

    Article  Google Scholar 

  45. Ciaramello, D.: Bamboo as a raw material for the paper industry: studies of three cooking processes with Bambusa tuldoides Munro. Bragantia 29(unico), 11–22 (1970)

    Article  Google Scholar 

  46. ABNT NBR.5640: Telha estrutural de fibrocimento Rio de Janeiro (1995)

  47. Weng, C.H.; Lin, D.F.; Chiang, P.C.: Utilization of sludge as brick materials. Adv. Environ. Res. 7(3), 679–685 (2003). https://doi.org/10.1016/S1093-0191(02)00037-0

    Article  Google Scholar 

  48. Correia, C.; Francisco, S.; Soares, R.; Savastano, H.: Nanofibrillated cellulose and cellulosic pulp for reinforcement of the extruded cement based materials. Constr. Build. Mater. 160, 376–384 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.066

    Article  Google Scholar 

  49. Nadhari, W.N.A.W.; Danish, M.; Nasir, M.S.R.M.; Geng, B.J.: Mechanical properties and dimensional stability of particleboard fabricated from steam pre-treated banana trunk waste particles. J. Build. Eng. 26(February), 22–25 (2019). https://doi.org/10.1016/j.jobe.2019.100848

    Article  Google Scholar 

  50. Ismail, S.; Yaacob, Z.: Properties of laterite brick reinforced with oil palm empty fruit bunch fibres. Pertanika J. Sci. Technol. 19(1), 33–43 (2011)

    Google Scholar 

  51. Ballesteros, J.E.M.; Mármol, G.; Filomeno, R.; Rodier, L.; Savastano, H.; Fiorelli, J.: Synergic effect of fiber and matrix treatments for vegetable fiber reinforced cement of improved performance. Constr. Build. Mater. 205, 52–60 (2019). https://doi.org/10.1016/j.conbuildmat.2019.02.007

    Article  Google Scholar 

  52. Kolawole, F.O.O.; Olugbemi, O.M.M.; Kolawole, S.K.K.; Owa, A.F.F.; Ajayi, E.S.S.: Fracture Toughness and Strength of Bamboo-Fiber Reinforced Laterite as Building Block Material. Univers. J. Mater. Sci. 5(3), 64–72 (2017). https://doi.org/10.13189/ujms.2017.050302

    Article  Google Scholar 

  53. IRC: SP :89: Guidelines for soil and granular material stabilization using cement, lime and fly ash. Indian Roads Congr., 53(9):1689–1699 (2010).

Download references

Funding

The authors gratefully acknowledge the financial support given by the Pan African Materials Institute (PAMI) under the World Bank African Centres of Excellence Program (Grant No. AUST/PAMI/2015 5415-NG). The author (HS) is also grateful to the Brazilian National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico: {PQ CNPq 307723/2017–8/}.

Author information

Authors and Affiliations

Authors

Contributions

Tido Tiwa Stanislas declares that all the authors had a significant participation in the development of this work. Tido Tiwa Stanislas was involved in conceptualization, investigation, and writing—original draft; Gbetoglo Charles Komadja and Odette Fayen Ngasoh were involved in investigation and writing—review and editing; Ifeyinwa Ijeoma Obianyo was involved in investigation, visualization, and writing—review and editing; Peter Azikiwe Onwualu was involved in investigation, visualization, writing—review and editing, and funding acquisition; and Josepha Foba Tendo and Holmer Savastano Junior were involved in conceptualization, supervision, writing—review and editing, and funding acquisition;

Corresponding author

Correspondence to Tido Tiwa Stanislas.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanislas, T.T., Komadja, G.C., Ngasoh, O.F. et al. Performance and Durability of Cellulose Pulp-Reinforced Extruded Earth-based Composites. Arab J Sci Eng 46, 11153–11164 (2021). https://doi.org/10.1007/s13369-021-05698-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05698-1

Keywords

Navigation