Skip to main content
Log in

Study of surface integrity and machining performance during main/rough cut and trim/finish cut mode of WEDM on Ti–6Al–4V: effects of wire material

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Due to increased demand of dimensional accuracy and high precision of manufactured parts, wire electrical discharge machining (WEDM) became very popular, especially for ‘difficult-to-cut’ materials like titanium alloys. Grade 5 Ti alloy (Ti–6Al–4V) has enormous application in aerospace and biomedical fields. WEDM performance of Ti–6Al–4V is somewhat restricted due to its poor thermal conductivity, formation of hard and brittle carbide-/oxide-rich layer and often surface cracking which affect fatigue performance of the part product. Therefore, multi-cut strategy is adapted to mitigate machining-induced defects. The multi-cut mode consists of one main/rough cut followed by a number of trim/finish cuts. Aspects of surface integrity of the WEDMed Ti–6Al–4V obtained in different modes of cut are delineated in this reporting. Three slots are produced: (1) main cut; (2) main cut followed by one trim cut; and (3) main cut followed by two trim cuts using uncoated brass wire and zinc-coated brass wire, respectively. Surface morphology along with topographical features including roughness average, crack density, recast layer thickness, material immigration, residual stress and micro-indentation hardness is studied. Results obtained thereof are analysed with relevance to kerf width, material removal rate and wire wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Budinski KG (1991) Tribological properties of titanium alloys. Wear 151(2):203–217

    Google Scholar 

  2. Sarkar S, Gosh K, Bhattacharyya B (2010) An integrated approach to optimization of WEDM combining single-pass and multipass cutting operation. Mater Manuf Process 25(8):799–807

    Google Scholar 

  3. Kumar J, Khamba JS (2010) Multi-response optimization in ultrasonic machining of titanium using Taguchi’s approach and utility concept. Int J Manuf Res 5(2):139–160

    Google Scholar 

  4. Kuriakose S, Shunmugam MS (2004) Characteristics of wire-electro discharge machined Ti6Al4V surface. Mater Lett 58(17–18):2231–2237

    Google Scholar 

  5. Mukherjee R, Chakraborty S, Samanta S (2012) Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms. Appl Soft Comput 12(8):2506–2516

    Google Scholar 

  6. Azhiri RB, Teimouri R, Baboly MG, Leseman Z (2014) Application of Taguchi, ANFIS and grey relational analysis for studying, modeling and optimization of wire EDM process while using gaseous media. Int J Adv Manuf Technol 71(1):279–295

    Google Scholar 

  7. Long BT, Phan NH, Cuong N, Jatti VS (2016) Optimization of PMEDM process parameter for maximizing material removal rate by Taguchi’s method. Int J Adv Manuf Technol 87(5–8):1929–1939

    Google Scholar 

  8. Azam M, Jahanzaib M, Abbasi JA, Abbas M, Wasim A, Hussain S (2016) Parametric analysis of recast layer formation in wire-cut EDM of HSLA steel. Int J Adv Manuf Technol 87(1–4):713–722

    Google Scholar 

  9. Govindan P, Joshi SS (2012) Analysis of micro-cracks on machined surfaces in dry electrical discharge machining. J Manuf Process 14(3):277–288

    Google Scholar 

  10. Dauw DF, Albert L (1992) About the evolution of wire tool performance in wire EDM. Ann CIRP 41(1):221–225

    Google Scholar 

  11. Prohaszka J, Mamalis AG, Vaxevanidis NM (1997) The effect of electrode material on machinability in wire electro-discharge machining. J Mater Process Technol 69(1–3):233–237

    Google Scholar 

  12. Liao YS, Yan MT, Chang CC (2002) A neural network approach for the on-line estimation of workpiece height in WEDM. J Mater Process Technol 121:252–258

    Google Scholar 

  13. Jangra KK (2015) An experimental study for multi-pass cutting operation in wire electrical discharge machining of WC-5.3% Co composite. Int J Adv Manuf Technol 76(5–8):971–982

    Google Scholar 

  14. Mandal A, Dixit AR, Das A, Mandal N (2016) Modeling and optimization of machining nimonic C-263 super alloy using multi-cut strategy in WEDM. Mater Manuf Process 31(7):860–868

    Google Scholar 

  15. Selvakumar G, Jiju B, Sarkar S, Mitra S (2016) Enhancing die corner accuracy through trim cut in WEDM. Int J Adv Manuf Technol 83(5–8):791–803

    Google Scholar 

  16. Chalisgaonkar R, Kumar J (2015) Investigation of wire consumption and wear mechanism in trim cut WEDM operation of commercially pure titanium. Mater Sci Forum 808:43–50

    Google Scholar 

  17. Chalisgaonkar R, Kumar J (2015) Multi-response optimization and modeling of trim cut WEDM operation of commercially pure titanium (CPTi) considering multiple user’s preferences. Eng Sci Technol Int J 18(2):125–134

    Google Scholar 

  18. Gong Y, Su Y, Cheng J, Wang C, Liu Y, Zhu Z (2017) Modeling and experimental study on breakdown voltage (BV) in low speed wire electrical discharge machining (LS-WEDM) of Ti–6Al–4V. Int J Adv Manuf Technol 90(5–8):1277–1292

    Google Scholar 

  19. Gong Y, Sun Y, Wen X, Wang C, Gao Q (2017) Experimental study on surface integrity of Ti–6Al–4V machined by LS-WEDM. Int J Adv Manuf Technol 88(9–12):197–207

    Google Scholar 

  20. Kumar A, Kumar V, Kumar J (2013) Investigation of machining parameters and surface integrity in wire electric discharge machining of pure titanium. Proc IMechE Part B J Eng Manuf 227(7):972–992

    Google Scholar 

  21. Sivaprakasam P, Hariharan P, Gowri S (2014) Modeling and analysis of micro-WEDM process of titanium alloy (Ti–6Al–4V) using response surface approach. Eng Sci Technol Int J 17(4):227–235

    Google Scholar 

  22. Manjaiah M, Narendranath S, Basavarajappa S, Gaitonde VN (2014) Wire electric discharge machining characteristics of titanium nickel shape memory alloy. Trans Nonferrous Met Soc China 24(10):3201–3209

    Google Scholar 

  23. Kuriachen B, Somashekhar KP, Mathew J (2015) Multiresponse optimization of micro-wire electrical discharge machining process. Int J Adv Manuf Technol 76(1–4):91–104

    Google Scholar 

  24. Ramamurthy A, Sivaramakrishnan R, Muthuramalingam T, Venugopal S (2015) Performance analysis of wire electrodes on machining Ti–6Al–4V alloy using electrical discharge machining process. Mach Sci Technol 19(4):577–592

    Google Scholar 

  25. Altug M, Erdem M, Ozay C (2015) Experimental investigation of kerf of Ti6Al4V exposed to different heat treatment processes in WEDM and optimization of parameters using genetic algorithm. Int J Adv Manuf Technol 78(9–12):1573–1583

    Google Scholar 

  26. Pramanik A, Basak AK (2018) Sustainability in wire electrical discharge machining of titanium alloy: understanding wire rupture. J Clean Prod 198:472–479

    Google Scholar 

  27. Li L, Wei XT, Li ZY (2014) Surface integrity evolution and machining efficiency analysis of WEDM of nickel-based alloy. Appl Surf Sci 313:138–143

    Google Scholar 

  28. Jangra KK, Kumar V, Kumar V (2014) An experimental and comparative study on rough and trim cutting operation in WEDM of hard to machine materials. Procedia Mater Sci 5:1603–1612

    Google Scholar 

  29. Liu JF, Li L, Guo YB (2014) Surface integrity evolution from main cut to finish trim cut in W-EDM of shape memory alloy. Procedia CIRP 13:137–142

    Google Scholar 

  30. Cao C, Zhang X, Zha X, Dong C (2014) Surface integrity of tool steels multi-cut by wire electrical discharge machining. Procedia Eng 81:1945–1951

    Google Scholar 

  31. Kumar V, Kumar V, Jangra KK (2015) An experimental investigation and statistical modelling for trim cutting operation in WEDM of Nimonic-90. Int J Ind Eng Comput 6(3):351–364

    Google Scholar 

  32. Kumar V, Jangra KK, Kumar V (2016) An experimental study on trim cutting operation using metal powder mixed dielectric in WEDM of Nimonic-90. Int J Ind Eng Comput 7(1):135–146

    Google Scholar 

  33. Goswami A, Kumar J (2017) Trim cut machining and surface integrity analysis of Nimonic 80A alloy using wire cut EDM. Eng Sci Technol Int J 20(1):175–186

    Google Scholar 

  34. Selvakumar G, Kuttalingam KGT, Prakash SR (2018) Investigation on machining and surface characteristics of AA5083 for cryogenic applications by adopting trim cut in WEDM. J Braz Soc Mech Sci Eng 40:267. https://doi.org/10.1007/s40430-018-1192-7

    Google Scholar 

  35. Arikatla SP, Mannan KT, Krishnaiah A (2017) Surface integrity characteristics in wire electrical discharge machining of titanium alloy during main cut and trim cuts. Mater Today Proc 4:1500–1509

    Google Scholar 

  36. Rahman SS, Ashraf MZI, Bashar MS, Kamruzzaman M, Nurul Amin AKM, Hossain MM (2017) Crystallinity, surface morphology, and chemical composition of the recast layer and rutile-TiO2 formation on Ti–6Al–4V ELI by wire-EDM to enhance biocompatibility. Int J Adv Manuf Technol 93(9–12):3285–3296

    Google Scholar 

  37. Sun Y, Gong Y, Yin G, Cai M, Li P (2018) Experimental study on surface quality and machinability of Ti–6Al–4V rotated parts fabricated by low-speed wire electrical discharge turning. Int J Adv Manuf Technol 95(5–8):2601–2611

    Google Scholar 

  38. Erden A, Temel D (1982) Investigation on the use of water as a dielectric liquid in EDM. In: Davies BJ (ed) Proceedings of the twenty-second international machine tool design and research conference. Macmillan Publishers Limited, Palgrave

    Google Scholar 

  39. Tosun N, Cogun C, Tosun G (2004) Study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method. J Mater Process Tech 152(3):316–322

    Google Scholar 

  40. Kumar A, Kumar V, Kumar J (2014) Microstructure analysis and material transformation of pure titanium and tool wear surface after wire electric discharge machining process. Mach Sci Technol 18(1):47–77

    Google Scholar 

  41. Sarkar S, Mitra S, Bhattacharyya B (2005) Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy. J Mater Process Technol 159(3):286–294

    Google Scholar 

  42. Kanlayasiri K, Boonmung S (2007) Effects of wire- EDM machining variables on surface roughness of newly developed DC 53 die steel: design of experiments and regression model. J Mater Process Technol 192–193:459–464

    Google Scholar 

  43. Kumar A, Kumar V, Kumar J (2012) Prediction of surface roughness in wire electric discharge machining (WEDM) process base on response surface methodology. Int J Eng Technol 2(4):708–719

    Google Scholar 

  44. Lee H-T, Tai TY (2003) Relationship between EDM parameters and surface crack formation. J Mater Process Technol 142(3):676–683

    Google Scholar 

  45. Janeček M, Nový F, Stráský J, Harcuba P, Wagner L (2011) Fatigue endurance of Ti–6Al–4V alloy with electro-eroded surface for improved bone in-growth. J Mech Behav Biomed Mater 4(3):417–422

    Google Scholar 

  46. Lee L, Lim L, Wong Y, Fong H (1992) Crack susceptibility of electro-discharge machined surfaces. J Mater Process Technol 29(1–3):213–221

    Google Scholar 

  47. Lin YC, Chen YF, Lin CT, Tzeng HJ (2008) Electrical discharge machining (EDM) characteristics associated with electrical discharge energy on machining of cemented tungsten carbide. Mater Manuf Process 23(4):391–399

    Google Scholar 

  48. Tai YT, Lu SJ, Chen YH (2011) Surface crack susceptibility of electro discharge-machined steel surfaces. Int J Adv Manuf Technol 57:983–989

    Google Scholar 

  49. Puri AB, Bhattacharyya B (2005) Modeling and analysis of white layer depth in a wire-cut EDM process through response surface methodology. Int J Adv Manuf Technol 25(3–4):301–307

    Google Scholar 

  50. Klink A, Guo YB, Klocke F (2011) Surface integrity evolution of powder metallurgical tool steel by main cut and finishing trim cuts in Wire-EDM. Procedia Eng 19:178–183

    Google Scholar 

  51. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10(2):S96–S101

    Google Scholar 

  52. Tengvall P, Lundström I (1992) Physico-chemical considerations of titanium as a biomaterial. Clin Mater 9(2):115–134

    Google Scholar 

  53. Prakash C, Kansal HK, Pabla B, Puri S, Aggarwal A (2016) Electric discharge machining—a potential choice for surface modification of metallic implants for orthopedic applications: a review. Proc Inst Mech Eng B J Eng Manuf 230(2):331–353

    Google Scholar 

  54. Ahmed T, Rack H (1998) Phase transformations during cooling in α + β titanium alloys. Mater Sci Eng A 243(1):206–211

    Google Scholar 

  55. Newton TR, Melkote SN, Watkins TR, Trejo RM, Reister L (2009) Investigation of the effect of process parameters on the formation and characteristics of white layer in wire-EDM of Inconel 718. Mater Sci Eng A 513–514:208–215

    Google Scholar 

  56. Weingärtner E, Kuster F, Wegener K (2012) Modeling and simulation of electrical discharge machining. Procedia CIRP 2:74–78

    Google Scholar 

  57. Hanaor DA, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46(4):855–874

    Google Scholar 

  58. Shen Y, Liu Y, Zhang Y, Dong H, Sun W, Wang X, Zheng C, Ji R (2015) High-speed dry electrical discharge machining. Int J Mach Tools Manuf 93:19–25

    Google Scholar 

  59. Zhang Y, Liu Y, Ji R, Cai B (2011) Study of the recast layer of a surface machined by sinking electrical discharge machining using water-in-oil emulsion as dielectric. Appl Surf Sci 257(14):5989–5997

    Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the support rendered by Dr. Francisco Ricardo Cunha, Editor-In-Chief, Journal of the Brazilian Society of Mechanical Sciences and Engineering (BMSE). Special thank goes to the anonymous reviewers for their valuable constructive comments and suggestions to prepare the paper a good contributor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav Datta.

Additional information

Technical Editor: Lincoln Cardoso Brandão.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 27, 28, 29, 30, 31 and 32.

Fig. 27
figure 27

Experimental set-up

Fig. 28
figure 28

Measurement of average kerf width for the slot produced through trim cut in two steps (MC + TC1 + TC2) using coated wire

Fig. 29
figure 29

Roughness profile of the machined surface

Fig. 30
figure 30

Measurement of SCD: WEDMed surface obtained in MC using uncoated wire \({\text{SCD}} = \frac{{\sum\nolimits_{i = 1}^{n} {L_{i} } }}{A} = \frac{{\sum\nolimits_{i = 1}^{n} {L_{i} } }}{L \times B} = \frac{{0.10 \times 10^{ - 3} }}{0.06 \times 0.04} = 0.0416\,\upmu{\text{m}}/\upmu{\text{m}}^{2}\)

Fig. 31
figure 31

Measurement of RLT: WEDMed surface obtained in (MC + TC1) using coated wire \({\text{RLT}} = \frac{A}{L} = \frac{350.838}{82.051}\frac{{\upmu{\text{m}}^{2} }}{{\upmu{\text{m}}}} = 4.275\,\upmu{\text{m}}\)

Fig. 32
figure 32

Optical micrograph exhibiting micro-indentations made of the WEDMed specimen obtained using coated wire in MC

1.1 Calculation of MRR

1.1.1 Workpiece/electrode: Ti–6Al–4V/Zn-coated brass wire

$$\begin{aligned} {\text{MRR}}\,{\text{for}}\,{\text{MC}} & = {\text{Kerf}}\,{\text{width}} \times t \times V_{\text{c}} \,\left( {{\text{mm}}^{3} /{ \hbox{min} }} \right) \\ & = 279.649 \times 5 \times \left( {\left( {6 \times 60} \right)/73} \right) \times 10^{ - 3} \\ & = 6.895\,{\text{mm}}^{3} / {\text{min}} \\ \end{aligned}$$
$$\begin{aligned} {\text{MRR}}\,{\text{for}}\,\left( {{\text{MC}} + {\text{TC}}1} \right) & = {\text{average}}\,{\text{of}}\,{\text{MRR}}\,{\text{during}}\,{\text{MC}}\,{\text{and}}\,{\text{TC}}1 \\ & \quad ({\text{considering}}\,{\text{constant}}\,{\text{kerf}}\,{\text{width}} \\ & \quad {\text{during}}\,{\text{MC}}\,{\text{in}}\,{\text{all}}\,{\text{operations}}; \\ & \quad {\text{and}}\,{\text{ignoring}}\,{\text{effect}}\,{\text{of}}\,{\text{wire}}\,{\text{diameter}}) \\ & = \left[ {\left( {279.649 \times 5 \times (6 \times 60 \div 75)} \right)} \right. \\ & \quad \left. { + ((318.596 - 279.649) \times 5 \times (6 \times 60 \div 30))} \right] \times \frac{{10^{ - 3} }}{2} \\ & = 4.524\,{\text{mm}}^{3} /{ \hbox{min} } \\ \end{aligned}$$
$$\begin{aligned} & {\text{MRR}}\,{\text{for}}\,\left( {{\text{MC}} + {\text{TC}}1 + {\text{TC}}2} \right) \\ & \quad = {\text{average}}\,{\text{of}}\,{\text{MRR}}\,{\text{during}}\,{\text{MC}},{\text{TC}}1,\,{\text{and}}\,{\text{TC2}}\,({\text{considering}}\,{\text{constant}}\,{\text{kerf}}\,{\text{width}}\,{\text{during}} \\ & \quad \quad {\text{MC}},{\text{and}}\,{\text{TC}}1\,{\text{in}}\,{\text{all}}\,{\text{operations}};\,{\text{and}}\,{\text{ignoring}}\,{\text{effect}}\,{\text{of}}\,{\text{wire}}\,{\text{diameter}}) \\ & \quad = \frac{{\left[ {(279.649 \times 5 \times (6 \times 60 \div 73)) + ((318.596 - 279.649) \times 5 \times (6 \times 60 \div 30)) + ((329.824 - 318.596) \times 5 \times (6 \times 60 \div 28))} \right] \times 10^{ - 3} }}{3} \\ & \quad = 3.317\,{\text{mm}}^{3} /{ \hbox{min} } \\ \end{aligned}$$

D: wire diameter; DMR: depth of material removed; WOR: predicted wire offset in RC; WO: wire offset in TC; OC1: overcut in RC; OC2: overcut in TC; Dww: gap between wire periphery and work surface during TC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadam, T., Datta, S. & Masanta, M. Study of surface integrity and machining performance during main/rough cut and trim/finish cut mode of WEDM on Ti–6Al–4V: effects of wire material. J Braz. Soc. Mech. Sci. Eng. 41, 151 (2019). https://doi.org/10.1007/s40430-019-1656-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1656-4

Keywords

Navigation