Skip to main content

Advertisement

Log in

Induction Motor Bearing Fault Classification Using Extreme Learning Machine Based on Power Features

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Electric motors perform the crucial task of converting electrical energy into essential mechanical energy on demand. Motors are plentifully used in the industrial sector all over the world to drive mechanical appliances. Despite being robust and sturdy, motors are not entirely fault-proof, and faults that are caused by the bearings trouble them the most. Early detection of these faults allows engineers to take preventive measures and avert hard breakdowns. Numerous studies have been conducted in this area of research. Many methods have been proposed and implemented to detect the existence and determine the type of fault present in an induction motor. However, this field of research is still open since there is room for improvements in the claimed results. In this paper, a novel fault diagnosis method has been proposed involving an emerging machine learning technique named extreme learning machine to identify the existence of flaws in motor bearings and specify their origins. The described method is tested on a benchmark bearing fault dataset provided by Case Western Reserve University Bearing Data Center. The acquired result yields a maximum classification accuracy of 99.86% and an average classification accuracy of 98.67% after being tested on multiple fault datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cabal-Yepez, E.; Valtierra-Rodriguez, M.; Romero-Troncoso, R.J.; Garcia-Perez, A.; Osornio-Rios, R.A.; Miranda-Vidales, H.; Alvarez-Salas, R.: FPGA-based entropy neural processor for online detection of multiple combined faults on induction motors. Mech. Syst. Signal Process. 30, 123–130 (2012). https://doi.org/10.1016/j.ymssp.2012.01.021

    Article  Google Scholar 

  2. Singh, G.; Kazzaz, Ahmed Saleh Al.; S. : Induction machine drive condition monitoring and diagnostic research—a survey. Electr. Power Syst. Res. 64, 145–15 (2003). https://doi.org/10.1016/S0378-7796(02)00172-4

    Article  Google Scholar 

  3. Karmakar, S.; Chattopadhyay, S.; Mitra, M.; Sengupta, S.: Induction Motor Fault Diagnosis. Springer , Singapore (2016)

    Book  Google Scholar 

  4. Malla, C.; Panigrahi, I.: Review of condition monitoring of rolling element bearing using vibration analysis and other techniques. J. Vib. Eng. Technol. 7, 407–414 (2019). https://doi.org/10.1007/s42417-019-00119-y

    Article  Google Scholar 

  5. Vishwakarma, M.; Purohit, R.; Harshlata, V.; Rajput, P.: Vibration analysis & condition monitoring for rotating machines: a review. Mater. Today Proc. 4, 2659–2664 (2017). https://doi.org/10.1016/j.matpr.2017.02.140

    Article  Google Scholar 

  6. Sikder, N.; Bhakta, K.; Al Nahid, A.; Islam, M.M.M.: Fault diagnosis of motor bearing using ensemble learning algorithm with FFT-based preprocessing. In: 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST).IEEE, pp. 564–569 (2019)

  7. Zheng, A., Casari, A.: Feature engineering for machine learning and data analytics - principles and techniques for data scientists (2018)

  8. Bearing Data Center. http://csegroups.case.edu/bearingdatacenter/home

  9. Eschmann, P., Hasbargen, L. (Ludwig), Weigand., Brändlein, J. (Johannes), FAG Kugelfischer Georg Schäfer KGaA.: Ball and roller bearings : theory, design, and application. R. Oldenbourg (1958)

  10. Randall, R.B.; Antoni, J.: Rolling element bearing diagnostics-a tutorial. Mech. Syst. Signal Process. 25, 485–520 (2011). https://doi.org/10.1016/j.ymssp.2010.07.017

    Article  Google Scholar 

  11. Seera, M.; Lim, C.P.; Nahavandi, S.; Loo, C.K.: Condition monitoring of induction motors: a review and an application of an ensemble of hybrid intelligent models. Expert Syst. Appl. 41, 4891–4903 (2014). https://doi.org/10.1016/j.eswa.2014.02.028

    Article  Google Scholar 

  12. Smith, W.A.; Randall, R.B.: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study. Mech. Syst. Signal Process. 64–65, 100–131 (2015). https://doi.org/10.1016/j.ymssp.2015.04.021

    Article  Google Scholar 

  13. Boudiaf, A.; Moussaoui, A.; Dahane, A.; Atoui, I.: A comparative study of various methods of bearing faults diagnosis using the case western reserve university data. J. Fail. Anal. Prev. 16, 271–284 (2016). https://doi.org/10.1007/s11668-016-0080-7

    Article  Google Scholar 

  14. Xiao, J.; Zhou, J.; Li, C.; Xiao, H.; Zhang, W.; Zhu, W.: Multi-fault classification based on the two-stage evolutionary extreme learning machine and improved artificial bee colony algorithm. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 1797–1807 (2013). https://doi.org/10.1177/0954406213496968

    Article  Google Scholar 

  15. Tian, Y.; Ma, J.; Lu, C.; Wang, Z.: Rolling bearing fault diagnosis under variable conditions using LMD-SVD and extreme learning machine. Mech. Mach. Theory. 90, 175–186 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.03.014

    Article  Google Scholar 

  16. Tang, G.; Wang, X.; He, Y.: A novel method of fault diagnosis for rolling bearing based on dual tree complex wavelet packet transform and improved multiscale permutation entropy. Math. Probl. Eng. 2016, 1–13 (2016). https://doi.org/10.1155/2016/5432648

    Article  Google Scholar 

  17. Luo, M.; Li, C.; Zhang, X.; Li, R.; An, X.: Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings. ISA Trans. 65, 556–566 (2016). https://doi.org/10.1016/j.isatra.2016.08.022

    Article  Google Scholar 

  18. Li, Y., Wang, X., Wu, J.: Fault diagnosis of rolling bearing based on permutation entropy and extreme learning machine. In: 2016 Chinese Control and Decision Conference (CCDC. IEEE, ). pp. 2966–2971 (2016)

  19. Mao, W.; He, J.; Li, Y.; Yan, Y.: Bearing fault diagnosis with auto-encoder extreme learning machine: a comparative study. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231, 1560–1578 (2016). https://doi.org/10.1177/0954406216675896

    Article  Google Scholar 

  20. Rodriguez, N.; Cabrera, G.; Lagos, C.; Cabrera, E.: Stationary wavelet singular entropy and kernel extreme learning for bearing multi-fault diagnosis. Entropy 19, 1–15 (2017). https://doi.org/10.3390/e19100541

    Article  MathSciNet  Google Scholar 

  21. Haidong, S.; Hongkai, J.; Xingqiu, L.; Shuaipeng, W.: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine. Knowledge-Based Syst. 140, 1–14 (2018). https://doi.org/10.1016/j.knosys.2017.10.024

    Article  Google Scholar 

  22. Razavi-Far, R., Saif, M., Palade, V., Zio, E.: Adaptive incremental ensemble of extreme learning machines for fault diagnosis in induction motors. In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1615–1622 (2017)

  23. Wang, Z.; Jia, L.; Qin, Y.: Adaptive diagnosis for rotating machineries using information geometrical Kernel-ELM based on VMD-SVD. Entropy (2018). https://doi.org/10.3390/e20010073

    Article  Google Scholar 

  24. Ma, J.; Wu, J.; Wang, X.: Fault diagnosis method based on wavelet packet-energy entropy and fuzzy kernel extreme learning machine. Adv. Mech. Eng. 10, 168781401775144 (2018). https://doi.org/10.1177/1687814017751446

    Article  Google Scholar 

  25. Hu, Q.; Qin, A.; Zhang, Q.; He, J.; Sun, G.: Fault diagnosis based on weighted extreme learning machine with wavelet packet decomposition and KPCA. IEEE Sens. J. 18, 8472–8483 (2018). https://doi.org/10.1109/JSEN.2018.2866708

    Article  Google Scholar 

  26. Mao, W.; Feng, W.; Liang, X.: A novel deep output kernel learning method for bearing fault structural diagnosis. Mech. Syst. Signal Process. 117, 293–318 (2019). https://doi.org/10.1016/j.ymssp.2018.07.034

    Article  Google Scholar 

  27. Rodriguez, N.; Barba, L.; Alvarez, P.; Cabrera-Guerrero, G.: Stationary wavelet-Fourier entropy and kernel extreme learning for bearing multi-fault diagnosis. Entropy 21, 540 (2019). https://doi.org/10.3390/e21060540

    Article  MathSciNet  Google Scholar 

  28. Li, K.; Xiong, M.; Li, F.; Su, L.; Wu, J.: A novel fault diagnosis algorithm for rotating machinery based on a sparsity and neighborhood preserving deep extreme learning machine. Neurocomputing 350, 261–270 (2019). https://doi.org/10.1016/j.neucom.2019.03.084

    Article  Google Scholar 

  29. Islam, M.M.M.; Kim, J.M.: Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network. Comput. Ind. 106, 142–153 (2019). https://doi.org/10.1016/j.compind.2019.01.008

    Article  Google Scholar 

  30. Eren, L.; Ince, T.; Kiranyaz, S.: A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier. J. Signal Process. Syst. 91, 179–189 (2019). https://doi.org/10.1007/s11265-018-1378-3

    Article  Google Scholar 

  31. Li, X.; Zhang, W.; Ding, Q.: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks. IEEE Trans. Ind. Electron. 66, 5525–5534 (2019). https://doi.org/10.1109/TIE.2018.2868023

    Article  Google Scholar 

  32. Jian, X.; Li, W.; Guo, X.; Wang, R.: Fault diagnosis of motor bearings based on a one-dimensional fusion neural network. Sensors (Switzerland) (2019). https://doi.org/10.3390/s19010122

    Article  Google Scholar 

  33. Bhakta, K.; Sikder, N.; Nahid, A. Al; Islam, M.M.M.: Fault diagnosis of ınduction motor bearing using cepstrum-based preprocessing and ensemble learning algorithm. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, pp. 1–6 (2019). https://doi.org/10.1109/ECACE.2019.8679223

  34. Xu, G.; Liu, M.; Jiang, Z.; Söffker, D.; Shen, W.: Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning. Sensors (Switzerland) (2019). https://doi.org/10.3390/s19051088

    Article  Google Scholar 

  35. Tissera, M.D.; McDonnell, M.D.: Modular expansion of the hidden layer in single layer feedforward neural networks. Int. Jt. Conf. Neural Networks, Proc (2016) https://doi.org/10.1109/IJCNN.2016.7727571

    Book  Google Scholar 

  36. Stoica, P.; Moses, R.L.: Introduction to Spectral Analysis. Pearson, London (1997)

    MATH  Google Scholar 

  37. Martinson, D.G.: Quantitative Methods of Data Analysis for the Physical Sciences and Engineering. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  38. Park, J.; Lindberg, C.R.; Vernon, F.L.: Multitaper spectral analysis of high-frequency seismograms. J. Geophys. Res. 92, 12675 (1987). https://doi.org/10.1029/JB092iB12p12675

    Article  Google Scholar 

  39. Thomson, D.J.: Spectrum estimation and harmonic analysis. Proc. IEEE. 70, 1055–1096 (1982). https://doi.org/10.1109/PROC.1982.12433

    Article  Google Scholar 

  40. Multitaper power spectral density estimate - MATLAB pmtm. https://www.mathworks.com/help/signal/ref/pmtm.html

  41. Percival, D.B.; Walden, A.T.: Spectral analysis for physical applications : multitaper and conventional univariate techniques. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  42. van der Maaten, L.; Hinton, G.: Visualizing data using t-SNE Laurens. J. Mach. Learn. Res. 9, 2579–2605 (2008). https://doi.org/10.1007/s10479-011-0841-3

    Article  MATH  Google Scholar 

  43. Huang, G. Bin.; Zhu, Q.Y.; Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. IEEE Int. Conf. Neural Networks - Conf. Proc. 2, 985–990 (2004). https://doi.org/10.1109/IJCNN.2004.1380068

    Article  Google Scholar 

  44. Huang, G.-B.; Zhou, H.; Ding, X.; Zhang, R.: Extreme learning machine for regression and multiclass classification . IEEE Trans Syst. Man, Cybern. Part B 42, 513–529 (2012). https://doi.org/10.1109/TSMCB.2011.2168604

    Article  Google Scholar 

  45. Huang, G.-B.; Chen, L.; Siew, C.-K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks. 17, 879–892 (2006). https://doi.org/10.1109/TNN.2006.875977

    Article  Google Scholar 

  46. Zhang, L.; Tian, F.; Zhang, D.: Domain adaptation guided drift compensation. In: Electronic Nose: Algorithmic Challenges. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2167-2_10

    Chapter  Google Scholar 

  47. Xu, Z.; Yao, M.: A fast incremental method based on regularized extreme learning machine. In: Cao, J., Mao, K., Cambria, E., Man, Z., Toh, K.A. (eds.) Proceedings of ELM-2014 Volume 1. Proceedings in Adaptation, Learning and Optimization, vol 3. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14063-6_2

    Chapter  Google Scholar 

  48. Bian, X.-H.; Li, S.-J.; Fan, M.-R.; Guo, Y.-G.; Chang, N.; Wang, J.-J.: Spectral quantitative analysis of complex samples based on the extreme learning machine. Anal. Methods. 8, 4674–4679 (2016). https://doi.org/10.1039/C6AY00731G

    Article  Google Scholar 

  49. McDonnell, M.D.; Tissera, M.D.; Vladusich, T.; Van Schaik, A.; Tapson, J.; Schwenker, F.: Fast, simple and accurate handwritten digit classification by training shallow neural network classifiers with the “Extreme learning machine” algorithm. PLoS ONE 10, 1–20 (2015). https://doi.org/10.1371/journal.pone.0134254

    Article  Google Scholar 

  50. Hewa, K.: K-Fold Cross Validation - Data Driven Investor – Medium. https://medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833

Download references

Acknowledgements

The authors wish to thank Case Western Reserve University Bearing Data Center for providing the motor vibration data and an image used in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah-Al Nahid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikder, N., Mohammad Arif, A.S., Islam, M.M.M. et al. Induction Motor Bearing Fault Classification Using Extreme Learning Machine Based on Power Features. Arab J Sci Eng 46, 8475–8491 (2021). https://doi.org/10.1007/s13369-021-05527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05527-5

Keywords

Navigation