Skip to main content

Domain Adaptation Guided Drift Compensation

  • Chapter
  • First Online:
Electronic Nose: Algorithmic Challenges

Abstract

This chapter addresses the sensor drift issue in E-nose from the viewpoint of machine learning. Traditional methods for drift compensation are laborious and costly due to the frequent acquisition and labeling process for gases samples recalibration. Extreme learning machines (ELMs) have been confirmed to be efficient and effective learning techniques for pattern recognition and regression. However, ELMs primarily focus on the supervised, semi-supervised, and unsupervised learning problems in single domain (i.e., source domain). Drift data and non-drift data can be recognized as cross-domain data. Therefore, this chapter proposes a unified framework, referred to as domain adaptation extreme learning machine (DAELM), which learns a cross-domain classifier with drift compensation. Experiments on the popular sensor drift data of multiple batches clearly demonstrate that the proposed DAELM significantly outperforms existing drift compensation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  2. G. Feng, G.B. Huang, Q. Lin, R. Gay, Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE. Trans. Neural Netw. 20(8), 1352–1357 (2009)

    Article  Google Scholar 

  3. G.B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multiclass classification. IEEE. Trans. Syst. Man Cybern Part B 42(2), 513–529 (2012)

    Article  Google Scholar 

  4. G.B. Huang, L. Chen, C.K. Siew, Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  5. Q.Y. Zhu, A.K. Qin, P.N. Suganthan, G.B. Huang, Evolutionary extreme learning machine. Pattern Recogn. 38, 1759–1763 (2005)

    Article  Google Scholar 

  6. W. Zong, G.B. Huang, Y. Chen, Weighted extreme learning machine for imbalance learning. Neurocomputing 101, 229–242 (2013)

    Article  Google Scholar 

  7. Z. Bai, G.B. Huang, D. Wang, H. Wang, M.B. Westover, Sparse extreme learning machine for classification. IEEE Trans. Cybern. (2014)

    Google Scholar 

  8. X. Li, W. Mao, W. Jiang, Fast sparse approximation of extreme learning machine. Neurocomputing 128, 96–103 (2014)

    Article  Google Scholar 

  9. G. Huang, S. Song, J.N.D. Gupta, C. Wu, Semi-supervised and unsupervised extreme learning machines. IEEE. Trans. Cybern. (2014)

    Google Scholar 

  10. J. Blitzer, R. McDonald, F. Pereira, Domain adaptation with structural correspondence learning, in Proceedings of Conference on Empirical Methods in Natural Language Processing, July 2006, pp. 120–128 (2006)

    Google Scholar 

  11. J. Yang, R. Yan, A.G. Hauptmann, Cross-domain video concept detection using adaptive SVMs, in Proceedings of International Conference on Multimedia, Sept 2007, pp. 188–197 (2007)

    Google Scholar 

  12. S.J. Pan, I.W. Tsang, J.T. Kwok, Q. Yang, Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)

    Article  Google Scholar 

  13. L. Duan, I.W. Tsang, D. Xu, T.S. Chua, Domain adaptation from multiple sources via auxiliary classifiers, in Proceedings of International Conference on Machine Learning, June 2009, pp. 289–296 (2009)

    Google Scholar 

  14. L. Duan, D. Xu, I.W. Tsang, Domain adaptation from multiple sources: domain-dependent regularization approach. IEEE Trans. Neural Netw. Learn. Syst. 23(3), 504–518 (2012)

    Article  Google Scholar 

  15. R. Gopalan, R. Li, R. Chellappa, Domain adaptation for object recognition: an unsupervised approach, in Proceedings ICCV, pp. 999–1006 (2011)

    Google Scholar 

  16. L. Zhang, F.C. Tian, A new kernel discriminant analysis framework for electronic nose recognition. Anal. Chim. Acta. 816, 8–17 (2014)

    Article  Google Scholar 

  17. L. Zhang, F. Tian, H. Nie, L. Dang, G. Li, Q. Ye, C. Kadri, Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine. Sens. Actuators B Chem. 174, 114–125 (2012)

    Article  Google Scholar 

  18. K. Brudzewski, S. Osowski, A. Dwulit, Recognition of coffee using differential electronic nose. IEEE. Trans. Instrum. Meas. 61(6), 1803–1810 (2012)

    Article  Google Scholar 

  19. B. Tudu, A. Metla, B. Das, N. Bhattacharyya, A. Jana, D. Ghosh, R. Bandyopadhyay, Towards versatile electronic nose pattern classifier for black tea quality evaluation: an incremental fuzzy approach. IEEE. Trans. Instrum. Meas. 58(9), 3069–3078 (2009)

    Article  Google Scholar 

  20. J.W. Garnder, H.W. Shin, E.L. Hines, An electronic nose system to diagnose illness. Sens. Actuators B Chem. 70, 19–24 (2000)

    Article  Google Scholar 

  21. L. Zhang, F. Tian, C. Kadri, G. Pei, H. Li, L. Pan, Gases concentration estimation using heuristics and bio-inspired optimization models for experimental chemical electronic nose. Sens. Actuators B Chem. 160(1), 760–770 (2011)

    Article  Google Scholar 

  22. L. Zhang, F. Tian, Performance study of multilayer perceptrons in a low-cost electronic. IEEE. Trans. Instrum. Meas. 63(7), 1670–1679 (2014)

    Article  Google Scholar 

  23. J.W. Gardner, P.N. Bartlett, Electronic Noses: Principles and Applications (Oxford University Press, Oxford, 1999)

    Google Scholar 

  24. R. Gutierrez-Osuna, Pattern analysis for machine olfaction: a review. IEEE Sens. J. 2(3), 189–202 (2002)

    Article  Google Scholar 

  25. M. Holmberg, F.A.M. Davide, C. Di Natale, A.D. Amico, F. Winquist, I. Lundström, Drift counteraction in odour recognition applications: lifelong calibration method. Sens. Actuators B Chem. 42, 185–194 (1997)

    Article  Google Scholar 

  26. S. Di Carlo, M. Falasconi, Drift correction methods for gas chemical sensors in artificial olfaction systems: techniques and challenges. Adv. Chem. Sens. 305–326 (2012)

    Google Scholar 

  27. T. Artursson, T. Eklov, I. Lundstrom, P. Martensson, M. Sjostrom, M. Holmberg, Drift correction for gas sensors using multivariate methods. J. Chemometr. 14(5–6), 711–723 (2000)

    Article  Google Scholar 

  28. S. Di Carlo, M. Falasconi, E. Sanchez, A. Scionti, G. Squillero, A. Tonda, Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation. Pattern Recogn. Lett. 32(13), 1594–1603 (2011)

    Article  Google Scholar 

  29. A. Vergara, S. Vembu, T. Ayhan, M.A. Ryan, M.L. Homer, R. Huerta, Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B Chem. 166–167, 320–329 (2012)

    Article  Google Scholar 

  30. A.C. Romain, J. Nicolas, Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview. Sens. Actuators B Chem. 146, 502–506 (2010)

    Article  Google Scholar 

  31. L. Zhang, F. Tian, S. Liu, L. Dang, X. Peng, X. Yin, Chaotic time series prediction of E-nose sensor drift in embedded phase space. Sens. Actuators B Chem. 182, 71–79 (2013)

    Article  Google Scholar 

  32. D.A.P. Daniel, K. Thangavel, R. Manavalan, R.S.C. Boss, ELM-based ensemble classifier for gas sensor array drift dataset, computational intelligence, cyber security and computational models. Adv. Intell. Syst. Comput. 246, 89–96 (2014)

    Article  Google Scholar 

  33. M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  34. http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations

  35. I.R. Lujan, J. Fonollosa, A. Vergara, M. Homer, R. Huerta, On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemometr. Intell. Lab. Syst. 130, 123–134 (2014)

    Article  Google Scholar 

  36. Q. Liu, X. Li, M. Ye, S. Sam Ge, X. Du, Drift compensation for electronic nose by semi-supervised domain adaptation. IEEE Sens. J. 14(3), 657–665 (2014)

    Article  Google Scholar 

  37. B. Gong, Y. Shi, F. Sha, K. Grauman, Geodesic flow kernel for unsupervised domain adaptation, in Proceedings CVPR, pp. 2066–2073 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Tian, F., Zhang, D. (2018). Domain Adaptation Guided Drift Compensation. In: Electronic Nose: Algorithmic Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-13-2167-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2167-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2166-5

  • Online ISBN: 978-981-13-2167-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics