Skip to main content
Log in

Experimental Study of the Relationship Between Dissolved Iron, Turbidity, and Removal of Cu(II) Ion From Aqueous Solutions Using Zero-Valent Iron Nanoparticles

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, nanoscale zero-valent iron has been prepared through the reduction method by sodium borohydride and then was used for removal of Cu(II) from aqueous solutions. The XRD analysis proved the high crystallinity of synthesized nZVI particles, and the calculated particle size was found to be 72 nm, which corresponds to a specific surface area of 10.68 m2/kg. The SEM analysis provided images about the morphologies of nZVI particles before/after Cu(II) adsorption, which revealed that the nZVI particles are spherical and tend to aggregate together in chain-like agglomerates. Besides, after Cu(II) adsorption, the SEM image evidenced a disparity in the structure of nZVI particles. The mineral composition of nZVI particles before/after Cu(II) adsorption was examined using XRF, which demonstrated that the nZVI particles were mainly composed of iron metal by up to 74.16%, and further proved the successful adsorption for Cu(II) onto nZVI particles. Kinetics, isotherms, and thermodynamics studies were showed that the adsorption process obeyed the pseudo-second-order, well-fitted to monolayer Langmuir isotherm with a maximum adsorption capacity of 54.35 mg/g, and have endothermic spontaneously nature, respectively. Both the released dissolved iron ions and the yielded turbidity that co-occurred along with the nZVI/Cu reaction were monitored. The dissolved iron concentrations recorded the highest value reached up to 106.3 mg/L at pH 1.0, while the turbidity dramatically increased to 32, and 35 NTU with increases in nZVI dosages and initial Cu(II) ion concentrations, respectively. Finally, some explanations have been suggested to represent the Cu(II) ion removal mechanisms onto nZVI particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J.: Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. (2012). https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  2. Nkwunonwo, U.C.; Odika, P.O.; Onyia, N.I.: A review of the health implications of heavy metals in food chain in Nigeria. Sci. World J. (2020). https://doi.org/10.1155/2020/6594109

    Article  Google Scholar 

  3. Ali, H.; Khan, E.; Ilahi, I.: Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J. Chem. (2019). https://doi.org/10.1155/2019/6730305

    Article  Google Scholar 

  4. Vardhan, K.H.; Kumar, P.S.; Panda, R.C.: A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J. Mol. Liq. (2019). https://doi.org/10.1016/j.molliq.2019.111197

    Article  Google Scholar 

  5. Sabela, M.I.; Kunene, K.; Kanchi, S.; Xhakaza, N.M.; Bathinapatla, A.; Mdluli, P.; Sharma, D.; Bisetty, K.: Removal of copper(II) from wastewater using green vegetable waste derived activated carbon: an approach to equilibrium and kinetic study. Arab. J. Chem. 12(8), 4331–4339 (2019). https://doi.org/10.1016/j.arabjc.2016.06.001

    Article  Google Scholar 

  6. Al-Saydeh, S.A.; El-Naas, M.H.; Zaidi, S.J.: Copper removal from industrial wastewater: a comprehensive review. J. Ind. Eng. Chem. 56, 35–44 (2017). https://doi.org/10.1016/j.jiec.2017.07.026

    Article  Google Scholar 

  7. Barceloux, D.G.; Barceloux, D.: Copper. J. Toxicol. Clin. Toxicol. 37(2), 217–230 (1999). https://doi.org/10.1081/clt-100102421

    Article  Google Scholar 

  8. Mustafa, S.K.; AlSharif, M.A.: Copper (Cu) an essential redox-active transition metal in living system—a review article. Am. J. Anal. Chem. 9(1), 15 (2018). https://doi.org/10.4236/ajac.2018.91002

    Article  Google Scholar 

  9. Alalwan, H.A.; Kadhom, M.A.; Alminshid, A.H.: Removal of heavy metals from wastewater using agricultural byproducts. J. Water Supply Res. Technol. AQUA 69(2), 99–112 (2020). https://doi.org/10.2166/aqua.2020.133

    Article  Google Scholar 

  10. Kumar, G.P.; Malla, K.A.; Yerra, B.; Rao, K.S.: Removal of Cu(II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks. Appl. Water Sci. 9(3), 44 (2019). https://doi.org/10.1007/s13201-019-0924-x

    Article  Google Scholar 

  11. Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X.: Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 9(3), 424 (2019). https://doi.org/10.3390/nano9030424

    Article  Google Scholar 

  12. Crini, G.; Lichtfouse, E.: Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 17(1), 145–155 (2019). https://doi.org/10.1007/s10311-018-0785-9

    Article  Google Scholar 

  13. Prabu, D.; Parthiban, R.; Kumar, P.S.; Namasivayam, S.K.R.: Synthesis, characterization and antibacterial activity of nano zero-valent iron impregnated cashew nut shell. Int. J. Pharm. Pharm. Sci. 7, 139–141 (2015)

    Google Scholar 

  14. Allabaksh, M.B.; Mandal, B.K.; Kesarla, M.K.; Kumar, K.S.; Reddy, P.S.: Preparation of stable zero valent iron nanoparticles using different chelating agents. J. Chem. Pharm. Res. 2(5), 67–74 (2010)

    Google Scholar 

  15. Qu, G.; Zeng, D.; Chu, R.; Wang, T.; Liang, D.; Qiang, H.: Magnetic Fe3O4 assembled on nZVI supported on activated carbon fiber for Cr(VI) and Cu(II) removal from aqueous solution through a permeable reactive column. Environ. Sci. Pollut. Res. 26(5), 5176–5188 (2019). https://doi.org/10.1007/s11356-018-3985-8

    Article  Google Scholar 

  16. Shu, H.-Y.; Chang, M.-C.; Yu, H.-H.; Chen, W.-H.: Reduction of an azo dye Acid Black 24 solution using synthesized nanoscale zerovalent iron particles. J. Colloid Interface Sci. 314(1), 89–97 (2007). https://doi.org/10.1016/j.jcis.2007.04.071

    Article  Google Scholar 

  17. Song, H.; Carraway, E.R.: Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ. Sci. Technol. 39(16), 6237–6245 (2005). https://doi.org/10.1021/es048262e

    Article  Google Scholar 

  18. Liu, M.; Wang, Y.; Chen, L.; Zhang, Y.; Lin, Z.: Mg(OH)2 supported nanoscale zero valent iron enhancing the removal of Pb(II) from aqueous solution. ACS Appl. Mater. Interfaces 7(15), 7961–7969 (2015). https://doi.org/10.1021/am509184e

    Article  Google Scholar 

  19. Li, Y.; Cheng, W.; Sheng, G.; Li, J.; Dong, H.; Chen, Y.; Zhu, L.: Synergetic effect of a pillared bentonite support on Se(VI) removal by nanoscale zero valent iron. Appl. Catal. B 174, 329–335 (2015). https://doi.org/10.1016/j.apcatb.2015.03.025

    Article  Google Scholar 

  20. Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X.: Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ. Sci. Technol. 50(14), 7290–7304 (2016). https://doi.org/10.1021/acs.est.6b01897

    Article  Google Scholar 

  21. Rice, E.W.; Baird, R.B.; Eaton, A.D.: Standard Methods for the Examination of Water and Wastewater, 23rd edn. American Public Health Association, American Water Works Association, Water Environment Federation (2017). ISBN: 9780875532875, https://doi.org/10.2105/SMWW.2882.002

  22. Fan, M.; Yuan, P.; Chen, T.; He, H.; Yuan, A.; Chen, K.; Zhu, J.; Liu, D.: Synthesis, characterization and size control of zerovalent iron nanoparticles anchored on montmorillonite. Chin. Sci. Bull. 55(11), 1092–1099 (2010). https://doi.org/10.1007/s11434-010-0062-1

    Article  Google Scholar 

  23. Sun, Y.-P.; Li, X.-Q.; Cao, J.; Zhang, W.-X.; Wang, H.P.: Characterization of zero-valent iron nanoparticles. Adv. Coll. Interface Sci. 120(1), 47–56 (2006). https://doi.org/10.1016/j.cis.2006.03.001

    Article  Google Scholar 

  24. Geçgel, Ü.; Özcan, G.; Gürpınar, G.Ç.: Removal of methylene blue from aqueous solution by activated carbon prepared from pea shells (Pisum sativum). J. Chem. (2012). https://doi.org/10.1155/2013/614083

    Article  Google Scholar 

  25. Malina, J.; Rađenović, A.: Kinetic aspects of methylene blue adsorption on blast furnace sludge. Chem. Biochem. Eng. Q. 28(4), 491–498 (2015). https://doi.org/10.15255/cabeq.2014.19366

    Article  Google Scholar 

  26. Gouamid, M.; Ouahrani, M.; Bensaci, M.: Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using date palm leaves. Energy Procedia 36, 898–907 (2013). https://doi.org/10.1016/j.egypro.2013.07.103

    Article  Google Scholar 

  27. Ho, Y.; McKay, G.; Wase, D.; Forster, C.: Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol. 18(7), 639–650 (2000). https://doi.org/10.1260/0263617001493693

    Article  Google Scholar 

  28. Hamdy, A.; Mostafa, M.; Nasr, M.: Regression analysis and artificial intelligence for removal of methylene blue from aqueous solutions using nanoscale zero-valent iron. Int. J. Environ. Sci. Technol. 16(1), 357–372 (2019). https://doi.org/10.1007/s13762-018-1677-z

    Article  Google Scholar 

  29. Hamdy, A.; Mostafa, M.K.; Nasr, M.: Zero-valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation. Water Sci. Technol. 78(2), 367–378 (2018). https://doi.org/10.2166/wst.2018.306

    Article  Google Scholar 

  30. Papegowda, P.K.; Syed, A.A.: Isotherm, kinetic and thermodynamic studies on the removal of methylene blue dye from aqueous solution using saw palmetto spent. Int. J. Environ. Res. 11(1), 91–98 (2017). https://doi.org/10.1007/s41742-017-0010-x

    Article  Google Scholar 

  31. Petala, E.; Dimos, K.; Douvalis, A.; Bakas, T.; Tucek, J.; Zbořil, R.; Karakassides, M.A.: Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution. J. Hazard. Mater. 261, 295–306 (2013). https://doi.org/10.1016/j.jhazmat.2013.07.046

    Article  Google Scholar 

  32. Taha, M.R.; Ibrahim, A.: Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent. J. Environ. Chem. Eng. 2(1), 1–8 (2014). https://doi.org/10.1016/j.jece.2013.11.021

    Article  MathSciNet  Google Scholar 

  33. Fan, J.; Guo, Y.; Wang, J.; Fan, M.: Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J. Hazard. Mater. 166(2), 904–910 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.091

    Article  Google Scholar 

  34. Tai, Y.; Shih, Y.: Debromination of decabrominated diphenyl ether by nanoscale zerovalent iron. In: Proceedings of the Remediation of Chlorinated and Recalcitrant Compounds 5th Conference, Monterey, CA (2006)

  35. Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R.D.; Lowry, G.V.: Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 41(1), 284–290 (2007). https://doi.org/10.1021/es061349a

    Article  Google Scholar 

  36. Fatisson, J.; Ghoshal, S.; Tufenkji, N.: Deposition of carboxymethylcellulose-coated zero-valent iron nanoparticles onto silica: roles of solution chemistry and organic molecules. Langmuir 26(15), 12832–12840 (2010). https://doi.org/10.1021/la1006633

    Article  Google Scholar 

  37. Phenrat, T.; Kim, H.-J.; Fagerlund, F.; Illangasekare, T.; Tilton, R.D.; Lowry, G.V.: Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environ. Sci. Technol. 43(13), 5079–5085 (2009). https://doi.org/10.1021/es900171v

    Article  Google Scholar 

  38. El-Temsah, Y.S.; Joner, E.J.: Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89(1), 76–82 (2012). https://doi.org/10.1016/j.chemosphere.2012.04.020

    Article  Google Scholar 

  39. Turabik, M.; Simsek, U.B.: Effect of synthesis parameters on the particle size of the zero valent iron particles. Inorgan. Nano-Met. Chem. 47(7), 1033–1043 (2017). https://doi.org/10.1080/15533174.2016.1219869

    Article  Google Scholar 

  40. dos Santos, F.S.; Lago, F.R.; Yokoyama, L.; Fonseca, F.V.: Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15. J. Mater. Res. Technol. 6(2), 178–183 (2017). https://doi.org/10.1016/j.jmrt.2016.11.004

    Article  Google Scholar 

  41. Mohammed, O.; Mumford, K.G.; Sleep, B.E.: Effects of hydrogen gas production, trapping and bubble-facilitated transport during nanoscale zero-valent iron (nZVI) injection in porous media. J. Contam. Hydrol. (2020). https://doi.org/10.1016/j.jconhyd.2020.103677

    Article  Google Scholar 

  42. Yu, C.; Zhang, D.; Dong, X.; Lin, Q.: Pyrolytic behavior of a zero-valent iron biochar composite and its Cu(II) removal mechanism. RSC Adv. 8(59), 34151–34160 (2018). https://doi.org/10.1039/c8ra05676e

    Article  Google Scholar 

  43. Kanel, S.R.; Greneche, J.-M.; Choi, H.: Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40(6), 2045–2050 (2006). https://doi.org/10.1021/es0520924

    Article  Google Scholar 

  44. Karabelli, D.; Üzüm, C.A.R.; Shahwan, T.; Eroglu, A.E.; Scott, T.B.; Hallam, K.R.; Lieberwirth, I.: Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake. Ind. Eng. Chem. Res. 47(14), 4758–4764 (2008). https://doi.org/10.1021/ie800081s

    Article  Google Scholar 

  45. Dada, A.O.; Adekola, F.; Odebunmi, E.: A novel zerovalent manganese for removal of copper ions: synthesis, characterization and adsorption studies. Appl. Water Sci. 7(3), 1409–1427 (2017). https://doi.org/10.1007/s13201-015-0360-5

    Article  Google Scholar 

  46. Tumin, N.D.; Chuah, A.L.; Zawani, Z.; Rashid, S.A.: Adsorption of copper from aqueous solution by Elais Guineensis kernel activated carbon. J. Eng. Sci. Technol. 3(2), 180–189 (2008)

    Google Scholar 

  47. Harman, B.I.; Genisoglu, M.: Synthesis and characterization of pumice-supported nZVI for removal of copper from waters. Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/2016/4372136

    Article  Google Scholar 

  48. Meena, A.K.; Mishra, G.; Rai, P.; Rajagopal, C.; Nagar, P.: Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J. Hazard. Mater. 122(1–2), 161–170 (2005). https://doi.org/10.1016/j.jhazmat.2005.03.024

    Article  Google Scholar 

  49. Prabu, D.; Parthiban, R.; SenthilKumar, P.; Kumari, N.; Saikia, P.: Adsorption of copper ions onto nano-scale zero-valent iron impregnated cashew nut shell. Desalin. Water Treat. 57(14), 6487–6502 (2006). https://doi.org/10.1080/19443994.2015.1007488

    Article  Google Scholar 

  50. Qiao, W.-J.; Wang, Z.-Z.; Zhai, S.-R.; Xiao, Z.-Y.; Zhang, F.; An, Q.-D.: Oxygen-containing/amino groups bifunctionalized SBA-15 toward efficient removal of methylene blue: kinetics, isotherm and mechanism analysis. J. Sol–Gel. Sci. Technol. 76(2), 320–331 (2015). https://doi.org/10.1007/s10971-015-3779-0

    Article  Google Scholar 

  51. Saifuddin, M.; Kumaran, P.: Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron. J. Biotechnol. 8(1), 43–53 (2005). https://doi.org/10.2225/vol8-issue1-fulltext-7

    Article  Google Scholar 

  52. Ndlovu, S.; Simate, G.; Seepe, L.; Shemi, A.; Sibanda, V.; Van Dyk, L.: The removal of Co2+, V3+ and Cr3+ from waste effluents using cassava waste. S. Afr. J. Chem. Eng. 18(1), 51–69 (2013)

    Google Scholar 

  53. Ramalingam, S.J.; Khan, T.H.; Pugazhlenthi, M.; Thirumurugan, V.: Removal of Pb(II) and Cd(II) ions from Industrial waste water using Calotropis Procera roots. Int. J. Eng. Sci. Invent. 2(4), 2319 (2013)

    Google Scholar 

  54. Bernard, E.; Jimoh, A.; Odigure, J.: Heavy metals removal from industrial wastewater by activated carbon prepared from coconut shell. Res. J. Chem. Sci. 3(8), 3–9 (2013)

    Google Scholar 

  55. Nassef, E.; Mahmoud, A.; Salah, H.; El-taweel, Y.: Removal of copper ions from liquid wastes by adsorption technique. Int. J. Res. Ind. Eng. 6(3), 255–268 (2017). https://doi.org/10.22105/riej.2017.101704.1026

    Article  Google Scholar 

  56. Shao, J.; Yu, X.; Zhou, M.; Cai, X.; Yu, C.: Nanoscale zero-valent iron decorated on bentonite/graphene oxide for removal of copper ions from aqueous solution. Materials 11(6), 945 (2018). https://doi.org/10.3390/ma11060945

    Article  Google Scholar 

  57. Zhang, J.; Qiu, M.: Adsorption kinetics and isotherms of copper ion in aqueous solution by bentonite supported nanoscale zero valent iron. Nat. Environ. Pollut. Technol. 18(1), 269–274 (2019)

    Google Scholar 

  58. Boparai, H.K.; Joseph, M.; O’Carroll, D.M.: Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186(1), 458–465 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.029

    Article  Google Scholar 

  59. Chen, S.; Chen, W.; Shih, C.: Heavy metal removal from wastewater using zero-valent iron nanoparticles. Water Sci. Technol. 58(10), 1947–1954 (2008). https://doi.org/10.2166/wst.2008.556

    Article  Google Scholar 

  60. Pullin, H.; Crane, R.; Morgan, D.; Scott, T.: The effect of common groundwater anions on the aqueous corrosion of zero-valent iron nanoparticles and associated removal of aqueous copper and zinc. J. Environ. Chem. Eng. 5(1), 1166–1173 (2017). https://doi.org/10.1016/j.jece.2017.01.038

    Article  Google Scholar 

  61. Pasinszki, T.; Krebsz, M.: Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials 10(5), 917 (2020). https://doi.org/10.3390/nano10050917

    Article  Google Scholar 

  62. Kraemer, S.M.: Iron oxide dissolution and solubility in the presence of siderophores. Aquat. Sci. 66(1), 3–18 (2004). https://doi.org/10.1007/s00027-003-0690-5

    Article  Google Scholar 

  63. Schwertmann, U.: Solubility and dissolution of iron oxides. Plant Soil 130(1–2), 1–25 (1991)

    Article  Google Scholar 

  64. Kokes, H.; Morcali, M.; Acma, E.: Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process. Int. J. Eng. Sci. Technol. 17(1), 39–44 (2014). https://doi.org/10.1016/j.jestch.2014.03.002

    Article  Google Scholar 

  65. Pijanowski, B.S.; Mahmud, I.: A study of the effects of temperature and oxygen content on the corrosion of several metals. In: Catholic University of America, Washington, DC Inst of Ocean Science and Engineering (1969)

  66. Gerasimov, V.; Rozenfeld, I.: Effect of temperature on the rate of corrosion of metals. Russ. Chem. Bull. 6(10), 1192–1197 (1957). https://doi.org/10.1007/bf01167386

    Article  Google Scholar 

  67. Li, H.; Shi, A.; Li, M.; Zhang, X.: Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals release from storm sewer sediments. J. Chem. (2013). https://doi.org/10.1155/2013/434012

    Article  Google Scholar 

  68. Taylor, K.C.; Nasr-El-Din, H.; Al-Alawi, M.: Systematic study of iron control chemicals used during well stimulation. SPE J. 4(01), 19–24 (1999). https://doi.org/10.2118/54602-PA

    Article  Google Scholar 

  69. Aksu, Z.; İşoğlu, İ.A.: Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem. 40(9), 3031–3044 (2005). https://doi.org/10.1016/j.procbio.2005.02.004

    Article  Google Scholar 

  70. Kalavathy, M.H.; Karthikeyan, T.; Rajgopal, S.; Miranda, L.R.: Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. J. Colloid Interface Sci. 292(2), 354–362 (2005). https://doi.org/10.1016/j.jcis.2005.05.087

    Article  Google Scholar 

  71. Prabu, D.; Parthiban, R.; Senthil Kumar, P.; Kumari, N.; Saikia, P.: Adsorption of copper ions onto nano-scale zero-valent iron impregnated cashew nut shell. Desalin. Water Treat. 57(14), 6487–6502 (2016). https://doi.org/10.1080/19443994.2015.1007488

    Article  Google Scholar 

  72. Dada, A.O.; Adekola, F.A.; Odebunmi, E.O.; Dada, F.E.; Bello, O.S.; Ogunlaja, A.S.: Bottom-up approach synthesis of core-shell nanoscale zerovalent iron (CS-nZVI): physicochemical and spectroscopic characterization with Cu(II) ions adsorption application. MethodsX 7, 100976 (2020). https://doi.org/10.1016/j.mex.2020.100976

    Article  Google Scholar 

  73. Altuntas, K.; Debik, E.; Kozal, D.; Yoruk, I.I.: Adsorption of copper metal ion from aqueous solution by nanoscale zero valent iron (nZVI) supported on activated carbon. Period. Eng. Nat. Sci. 5(1), 5 (2017). https://doi.org/10.21533/p-en.v5i1.77

    Article  Google Scholar 

  74. Zhang, X.; Yan, L.; Liu, J.; Zhang, Z.; Tan, C.: Removal of different kinds of heavy metals by novel PPG-nZVI beads and their application in simulated stormwater infiltration facility. Appl. Sci. 9(20), 4213 (2019). https://doi.org/10.3390/app9204213

    Article  Google Scholar 

  75. Fan, M.; Hu, J.; Cao, R.; Xiong, K.; Wei, X.: Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO. Sci. Rep. 7(1), 1–14 (2017). https://doi.org/10.1038/s41598-017-18223-y

    Article  Google Scholar 

  76. Li, X.; Zhang, W.: Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J. Phys. Chem. C 111(19), 6939–6946 (2007). https://doi.org/10.1021/jp0702189

    Article  Google Scholar 

  77. Shtepliuk, I.; Caffrey, N.M.; Iakimov, T.; Khranovskyy, V.; Abrikosov, I.A.; Yakimova, R.: On the interaction of toxic heavy metals (Cd, Hg, Pb) with graphene quantum dots and infinite graphene. Sci. Rep. 7(1), 3934 (2017). https://doi.org/10.1038/s41598-017-04339-8

    Article  Google Scholar 

  78. Grande-Tovar, C.D.; Vallejo, W.; Zuluaga, F.: Equilibrium and kinetic study of lead and copper ion adsorption on chitosan-grafted-polyacrylic acid synthesized by surface initiated atomic transfer polymerization. Molecules 23(9), 2218 (2018). https://doi.org/10.3390/molecules23092218

    Article  Google Scholar 

  79. Ansari, M.; Raisi, A.; Aroujalian, A.; Dabir, B.; Irani, M.: Synthesis of nano-NaX zeolite by microwave heating method for removal of lead, copper, and cobalt ions from aqueous solution. J. Environ. Eng. 141(5), 04014088 (2015). https://doi.org/10.1061/(asce)ee.1943-7870.0000919

    Article  Google Scholar 

  80. Zou, Z.; Shi, Z.; Deng, L.: Highly efficient removal of Cu(II) from aqueous solution using a novel magnetic EDTA functionalized CoFe2O4. RSC Adv. 7(9), 5195–5205 (2017). https://doi.org/10.1039/c6ra26821h

    Article  Google Scholar 

  81. Lee, M.-E.; Park, J.H.; Chung, J.W.: Comparison of the lead and copper adsorption capacities of plant source materials and their biochars. J. Environ. Manag. 236, 118–124 (2019). https://doi.org/10.1016/j.jenvman.2019.01.100

    Article  Google Scholar 

  82. Hu, S.; Lin, X.; Zhao, W.; Luo, X.: Efficient simultaneous removal of U(VI) and Cu(II) from aqueous solution using core–shell nZVI@SA/CMC-Ca beads. J. Radioanal. Nucl. Chem. 315(2), 223–235 (2018). https://doi.org/10.1007/s10967-017-5662-7

    Article  Google Scholar 

  83. Melichova, Z.; Handzusova, M.: Removal of Cu(II) ions from aqueous solutions by adsorption onto natural bentonites. Solid State Phenom. 244, 205 (2015). https://doi.org/10.4028/www.scientific.net/ssp.244.205

    Article  Google Scholar 

  84. Pan, X.-D.; Wu, P.-G.; Jiang, X.-G.: Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China. Sci. Rep. 6, 20317 (2016). https://doi.org/10.1038/srep20317

    Article  Google Scholar 

  85. Yuwei, C.; Jianlong, W.: Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chem. Eng. J. 168(1), 286–292 (2011). https://doi.org/10.1016/j.cej.2011.01.006

    Article  Google Scholar 

  86. Wang, X.; Qin, Y.: Equilibrium sorption isotherms for Cu2+ on rice bran. Process Biochem. 40(2), 677–680 (2005). https://doi.org/10.1016/j.procbio.2004.01.043

    Article  Google Scholar 

  87. Nasernejad, B.; Zadeh, T.E.; Pour, B.B.; Bygi, M.E.; Zamani, A.: Camparison for biosorption modeling of heavy metals (Cr(III), Cu(II), Zn(II)) adsorption from wastewater by carrot residues. Process Biochem. 40(3), 1319–1322 (2005). https://doi.org/10.1016/j.procbio.2004.06.010

    Article  Google Scholar 

  88. Basci, N.; Kocadagistan, E.; Kocadagistan, B.: Biosorption of copper(II) from aqueous solutions by wheat shell. Desalination 164(2), 135–140 (2004). https://doi.org/10.1016/s0011-9164(04)00172-9

    Article  Google Scholar 

  89. Osińska, M.: Removal of lead(II), copper(II), cobalt(II) and nickel(II) ions from aqueous solutions using carbon gels. J. Sol–Gel. Sci. Technol. 81(3), 678–692 (2017). https://doi.org/10.1007/s10971-016-4256-0

    Article  Google Scholar 

  90. Gupta, V.K.; Ali, I.: Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Sep. Purif. Technol. 18(2), 131–140 (2000). https://doi.org/10.1016/s1383-5866(99)00058-1

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the Housing & Building National Research Center (HBRC), (www.hbrc.edu.eg) for providing facilities.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hamdy.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdy, A. Experimental Study of the Relationship Between Dissolved Iron, Turbidity, and Removal of Cu(II) Ion From Aqueous Solutions Using Zero-Valent Iron Nanoparticles. Arab J Sci Eng 46, 5543–5565 (2021). https://doi.org/10.1007/s13369-020-05079-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05079-0

Keywords

Navigation