Skip to main content
Log in

Influence of Critical Parameters of Mix Proportions on Properties of MK-Based Geopolymer Concrete

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Conventional Portland cement concrete has been extensively used in the past century due to its superior performance compared to other building materials. Recognizing the environmental impact of cement composites and global pressure toward implementation of sustainable construction materials, geopolymer concrete has been introduced as a potential alternative to conventional cement concrete. This study investigates the properties of metakaolin-based geopolymer concrete by employing various mix design parameters based on locally sourced materials. The test results reported herein comprised 16 mixes divided into three groups to understand the influence of various parameters on the workability and compressive strength of the concrete and hence optimizing the mix proportions. The outcome of this research provided insights into the curing conditions, curing age, sodium hydroxide molarity, sodium silicate content, molar ratios of the mix, and aggregate water absorption effect on the geopolymer concrete behavior. A model is proposed for deciding the water to solids ratio based on the total aggregate percentage for workable geopolymer mixes. In order to produce MK-based geopolymer concrete for structural applications, thresholds are proposed for the three molar ratios, namely sodium oxide to silicon oxide, sodium oxide to aluminum oxide, and water to sodium oxide ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kumar, P.; Pankar, C.; Manish, D.; Santhi, A.S.: Study of mechanical and microstructural properties of geopolymer concrete with GGBS and Metakaolin. Mater. Today Proc. 5(14), 28127–28135 (2018)

    Article  Google Scholar 

  2. Heah, C.Y.; Kamarudin, H.; Mustafa Al Bakri, A.M.; Binhussain, M.; Luqman, M.; Khairul Nizar, I.; Ruzaidi, C.M.; Liew, Y.M.: Effect of curing profile on kaolin-based geopolymers. Phys. Proc. 22, 305–311 (2011)

    Article  Google Scholar 

  3. Okoye, F.N.; Durgaprasad, J.; Singh, N.B.: Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete. Constr. Build Mater. 98, 685–691 (2015)

    Article  Google Scholar 

  4. Aliabdo, A.A.; Abd Elmoaty, A.M.; Salem, H.A.: Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Constr. Build. Mater. 123, 581–593 (2016)

    Article  Google Scholar 

  5. Nazari, A.; Bagheri, A.; Sanjayan, J.G.; Dao, M.; Mallawa, C.; Zannis, P.; Zumbo, S.: Thermal shock reactions of Ordinary Portland cement and geopolymer concrete: microstructural and mechanical investigation. Constr. Build. Mater. 196, 492–498 (2019)

    Article  Google Scholar 

  6. Kathirvel, P.; Kaliyaperumal, S.R.M.: Influence of recycled concrete aggregates on the flexural properties of reinforced alkali activated slag concrete. Constr. Build. Mater. 102, 51–58 (2016)

    Article  Google Scholar 

  7. He, J.; Jie, Y.; Zhang, J.; Yu, Y.; Zhang, G.: Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem. Concr. Compos. 37, 108–118 (2013)

    Article  Google Scholar 

  8. Zabihi, S.M.; Tavakoli, M.; Mohseni, E.: Engineering and microstructural properties of fiber-reinforced rice husk–ash based geopolymer concrete. J Mater. Civ. Eng. 30(8), 1–10 (2018)

    Article  Google Scholar 

  9. Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A.: Engineering properties of alkali-activated natural pozzolan concrete. ACI Mater. J. 108, 1–9 (2011)

    Google Scholar 

  10. Kantarcı, F.; Türkmen, İ.; Ekinci, E.: Optimization of production parameters of geopolymer mortar and concrete: a comprehensive experimental study. Constr. Build. Mater. 228, 1–17 (2019)

    Article  Google Scholar 

  11. Sagoe-Crentsil, K.; Weng, L.: Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: part II. High Si/Al ratio systems. J. Mater. Sci. 42, 3007–3014 (2007)

    Article  Google Scholar 

  12. Weng, L.; Sagoe-Crentsil, K.: Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: part I—Low Si/Al ratio systems. J. Mater. Sci. 42, 2997–3006 (2007)

    Article  Google Scholar 

  13. Yao, X.; Zhang, Z.; Zhu, H.; Chen, Y.: Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry. Thermochim Acta 493(1–2), 49–54 (2009)

    Article  Google Scholar 

  14. Zhang, Y.; Sun, W.: Semi-empirical AM1 calculations on 6-memebered alumino-silicate rings model: implications for dissolution process of metakaoline in alkaline solutions. J Mater Sci 42(9), 3015–3023 (2007)

    Article  Google Scholar 

  15. Yunsheng, Z.; Wei, S.; Zongjin, L.; Yantao, J.: Study of polycondensation process of metakaolin-based geopolymeric cement using semi-empirical AM1 calculations. Adv. Cem. Res. 21(2), 67–73 (2009)

    Article  Google Scholar 

  16. Bing-hui, M.; Zhu, H.; Xue-min, C.; Yan, H.; Si-yu, G.: Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl. Clay Sci. 99, 144–148 (2014)

    Article  Google Scholar 

  17. Muñiz-Villarreal, M.S.; Manzano-Ramírez, A.; Sampieri-Bulbarela, S.; Gasca-Tirado, J.R.; Reyes-Araiza, J.L.; Rubio-Ávalos, J.C.; Pérez-Bueno, J.J.; Apatiga, L.M.; Zaldivar-Cadena, A.; Amigó-Borrás, V.: The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Mater. Lett. 65(6), 995–998 (2011)

    Article  Google Scholar 

  18. Perera, D.S.; Uchida, O.; Vance, E.R.; Finnie, K.S.: Influence of curing schedule on the integrity of geopolymers. J. Mater. Sci. 42, 3099–3106 (2007)

    Article  Google Scholar 

  19. Rovnaník, P.: Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build Mater. 24(7), 1176–1183 (2010)

    Article  Google Scholar 

  20. Pires, E.F.C.; Azevedo, C.M.C.; Pimenta, A.R.; Silva, F.J.; Darwish, F.A.I.: Fracture properties of geopolymer concrete based on metakaolin, fly ash and rice rusk ash. Mater. Res. 20, 630–636 (2017)

    Article  Google Scholar 

  21. Mohseni, E.: Assessment of Na2SiO3 to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites. Constr. Build Mater. 186, 904–911 (2018)

    Article  Google Scholar 

  22. Alanazi, H.; Yang, M.; Zhang, D.; Gao, Z.: Early strength and durability of metakaolin-based geopolymer concrete. Magn. Concr. Res. 69(1), 46–54 (2017)

    Article  Google Scholar 

  23. Pouhet, R.; Cyr, M.: Formulation and performance of flash metakaolin geopolymer concretes. Constr. Build. Mater. 120, 150–160 (2016)

    Article  Google Scholar 

  24. Xie, J.; Chen, W.; Wang, J.; Fang, C.; Zhang, B.; Liu, F.: Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete. Constr. Build. Mater. 226, 345–359 (2019)

    Article  Google Scholar 

  25. Standard, A. S. T. M.: ASTM C-143 Standard test method for slump of Portland cement concrete. ASTM International (1990)

  26. Standard, A. S. T. M.: ASTM C39 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International (2015)

  27. Albitar, M.; Visintin, P.; Ali, M.S.M.; Drechsler, M.: Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash. KSCE J. Civ. Eng. 19, 1445–1455 (2015)

    Article  Google Scholar 

  28. Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.J.; Rangan, B.V.: On the development of fly ash-based geopolymer concrete. Mater. J. 101, 467–472 (2004)

    Google Scholar 

  29. Nath, P.; Sarker, P.K.: Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr. Build Mater. 130, 22–31 (2017)

    Article  Google Scholar 

  30. Aliabdo, A.A.; Abd Elmoaty, A.M.; Salem, H.A.: Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr. Build Mater. 121, 694–703 (2016)

    Article  Google Scholar 

  31. Parveen, S.D.; Junaid, M.T.; Jindal, B.B.; Mehta, A.: Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing. Constr. Build Mater. 180, 298–307 (2018)

    Article  Google Scholar 

  32. Wang, H.; Li, H.; Yan, F.: Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids Surf. A Physicochem. Eng. Asp. 268(1–3), 1–6 (2005)

    Google Scholar 

  33. Sperberga, I.; Rundans, M.; Cimmers, A.; Krage, L.; Sidraba, I.: Mechanical properties of materials obtained via alkaline activation of illite-based clays of Latvia. J. Phys. Conf. Ser. 602, 1–4 (2015)

    Article  Google Scholar 

  34. Monita, O.; Nikraz, H.: Properties of fly ash geopolymer concrete designed by Taguchi method. Mater. Des. 36, 191–198 (2012)

    Article  Google Scholar 

  35. Pan, Z.; Sanjayan, J.G.; Rangan, B.V.: Fracture properties of geopolymer paste and concrete. Magn. Concr. Res. 63(10), 763–771 (2011)

    Article  Google Scholar 

  36. Rowles, M.R.; O'connor B, : Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. J. Mater. Chem. 13, 1161–1165 (2003)

    Article  Google Scholar 

  37. Lahoti, M.; Narang, P.; Tan, K.H.; Yang, E.: Mix design factors and strength prediction of metakaolin-based geopolymer. Ceram. Int. 43(14), 11433–11441 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

he authors are grateful to the Deanship of Scientific Research, King Saud University, for funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husain Abbas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghannam, M., Albidah, A., Abbas, H. et al. Influence of Critical Parameters of Mix Proportions on Properties of MK-Based Geopolymer Concrete. Arab J Sci Eng 46, 4399–4408 (2021). https://doi.org/10.1007/s13369-020-04970-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04970-0

Keywords

Navigation