Skip to main content
Log in

Construction of Efficient Recombinant Strain Through Genome Shuffling in Marine Endophytic Fusarium sp. ALAA-20 for Improvement Lovastatin Production Using Agro-Industrial Wastes

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

During searching for marine endophytic fungi that have the potential to effectively produce lovastatin using agro-industrial residues, the endophytic Fusarium sp. ALAA-20 was isolated from marine sponge Aplysina fistularis with lovastatin production of 4.51 mg/gds in the solid-state fermentation of rice straw. Lovastatin yield was improved by enhancing approaches including mutation induction and three consecutive cycles of genome shuffling of the producing strain ALAA-20 to obtain the hyperactive recombinant strain FR3/1 with a higher yield of lovastatin (52.1 mg/gds), which is 11.55- and 3.1-fold of the parent strain ALAA-20 and the hyperactive mutant NE21 (16.8 mg/gds), respectively. Moreover, optimization of the solid-state fermentation of oil cakes by the recombinant FR3/1 significantly increased the lovastatin production by 64.19-, 17.23- and 5.56-fold over the selected wild strain (ALAA-20), mutant (NE21) and fusant (FR3/1) prior to the optimization process. Lovastatin obtained from the recombinant FR3/1 strain showed pleiotropic effects such as antibacterial activity against drug-resistant Staphylococcus, Pseudomonas and Klebsiella species and antifungal activity against Candida, Aspergillus, Fusarium and Trichophyton species. New recombinant strain FR3/1 lovastatin showed potent antitumor activity against liver (HepG-2), colon (HCT-116), breast (MCF-7) and lung (A-549) cancer cell lines with IC50 equal to 8.0, 7.2, 4.8 and 9.1 μM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ward, N.C.; Watts, G.F.; Ecke, R.H.: Statin toxicity mechanistic insights and clinical implications. Circ. Res. 124(2), 328–350 (2019)

    Article  Google Scholar 

  2. Suwannarat, S.; Iewkittayakorn, J.; Sukpondma, Y.; Rukachaisirikul, V.; Phongpaichit, S.; Chotigeat, W.: Optimization of the production of lovastatin from Aspergillus sclerotiorum PSU-RSPG178 under static liquid culture using response surface methodology. Sains Malays. 48(1), 93–102 (2019)

    Article  Google Scholar 

  3. Xiong, Z.; Cao, X.; Wen, Q.; Chen, Z.; Cheng, Z.; Huang, X.; Zhang, Y.; Long, C.; Zhang, Y.; Huang, Z.: An overview of the bioactivity of monacolin K/lovastatin. Food Chem. Toxicol. 131, 110585 (2019)

    Article  Google Scholar 

  4. El-Gendy, M.M.A.A.; El-Bondkly, A.M.A.; Yahya, S.M.M.: Production and evaluation of antimycotic and antihepatitis C virus potential of fusant MERV6270 derived from mangrove endophytic fungi using novel substrates of agroindustrial wastes. Appl. Biochem. Biotechnol. 174, 2674–2701 (2014)

    Article  Google Scholar 

  5. El-Gendy, M.M.A.A.; Al-Zahrani, H.A.A.; El-Bondkly, A.M.A.: Genome shuffling of mangrove endophytic Aspergillus luchuensis MERV10 for improving the cholesterol-lowering agent lovastatin under solid state fermentation. Mycobiology 44(3), 171–179 (2016)

    Article  Google Scholar 

  6. Saxena, S.; Chhibber, M.; Singh, I.P.: Fungal bioactive compounds in pharmaceutical research and development. Curr. Bioact. Compd. 15(2), 211–231 (2019)

    Article  Google Scholar 

  7. El-Bondkly, A.M.; El-Gendy, M.M.A.: Cellulase production from agricultural residues by recombinant fusant strain of a fungal endophyte of the marine sponge Latrunculia corticata for production of ethanol. Antonie Van Leeuwenhoek 101, 331–346 (2012)

    Article  Google Scholar 

  8. El-Bondkly, A.M.; El-Gendy, M.M.A.A.; Wiese, J.; Imhoff, J.F.: Phylogenetic diversity and antimicrobial activities of culturable endophytic actinobacteria isolated from different Egyptian marine sponges and soft corals. Aust. J. Basic Appl. Sci. 6(4), 25–33 (2012)

    Google Scholar 

  9. El-Gendy, M.M.A.A.; Yahya, S.M.M.; Hamed, A.R.; Soltan, M.M.; El-Bondkly, A.M.A.: Phylogenetic analysis and biological evaluation of marine endophytic fungi derived from Red Sea sponge Hyrtios erectus. Appl. Biochem. Biotechnol. 185(3), 755–777 (2018)

    Article  Google Scholar 

  10. El-Gendy, M.M.A.: Production of glucoamylase by marine endophytic Aspergillus sp JAN-25 under optimized solid-state fermentation conditions on agro residues. Aust. J. Basic Appl. Sci. 6(4), 41–54 (2012)

    Google Scholar 

  11. El-Gendy, M.M.A.A.; Al-Zahrani, S.H.M.; El-Bondkly, A.M.A.: Construction of potent recombinant strain through intergeneric protoplast fusion in endophytic fungi for anticancerous enzymes production using rice straw. Appl. Biochem. Biotechnol. 183(1), 30–50 (2017)

    Article  Google Scholar 

  12. Javed, S.; Meraj, M.; Mahmood, S.; Hameed, A.; Naz, F.; Hassan, S.: Biosynthesis of lovastatin using agro-industrial wastes as carrier substrates. Trop. J. Pharm. Res. 16(2), 263–269 (2017)

    Article  Google Scholar 

  13. Raj, R.; Gupta, S.K.; Verma, M.: Microbial fermentation of lovastatin and other bioactive secondary metabolites using Aspergillus terreus. Res. J. Life Sci. Bioinform. Pharm. Chem Sci. 5(3), 34 (2019)

    Google Scholar 

  14. Petri, R.; Schmidt-Danner, C.: Dealing with complexity: evolutionary engineering and genome shuffling. Curr. Opin. Biotechnol. 15, 298–304 (2004)

    Article  Google Scholar 

  15. Munir, N.; Asghar, M.; Murtaza, M.A.; Akhter, N.; Rasool, G.; Shah, S.M.A.; Tahir, I.M.; Khan, F.S.; Riaz, M.; Sultana, S.; Rashid, A.; Akhlaq, M.; Akram, M.: Enhanced production of lovastatin by filamentous fungi through solid state fermentation. Pak. J. Pharm. Sci. 31(4), 1583–1589 (2018)

    Google Scholar 

  16. El-Gendy, M.M.A.A.; El-Bondkly, A.M.A.; Keera, A.A.; Ali, A.M.: Incidence of methicillin-resistant Staphylococcus aureus (MRSA) in microbial community of cancer patients and evaluation of their resistant pattern. Arabian J. Sci. Eng. 43(1), 83–92 (2018)

    Article  Google Scholar 

  17. El-Gendy, M.M.A.A.; Mohamed, Z.K.; Hekal, N.Z.; Ali, F.M.; Yousef, A.E.M.: Production of bioactive metabolites from different marine endophytic Streptomyces species and testing against methicillin resistant Staphylococcus aureus (MRSA) and cancer cell lines. BioTechnologia 99(1), 13–35 (2018)

    Article  Google Scholar 

  18. El-Gendy, M.M.A.A.; Al-Zahrani, H.A.A.; Abozinadah, N.; El-Bondkly, A.M.A.: In vivo, evaluation of the toxic effect of ethyl acetate extracts of marine antibiotic resistance Pseudomonas species derived from the Red Sea. Appl. Biochem. Biotechnol. 184(1), 323–349 (2018)

    Article  Google Scholar 

  19. Nicolas, I.; Bordeau, V.; Bondon, A.; Baudy-Floc’h, M.; Felden, B.: Novel antibiotics effective against Gram-positive and -negative multi-resistant bacteria with limited resistance. PLoS Biol. 17(7), e3000337 (2019)

    Article  Google Scholar 

  20. Parihar, S.P.; Guler, R.; Brombacher, F.: Statins: a viable candidate for host-directed therapy against infectious diseases. Nat. Rev. Immunol. 19(2), 104–117 (2019)

    Article  Google Scholar 

  21. Pandey, V.V.; Varshney, V.K.; Pandey, A.: Lovastatin: a journey from Ascomycetes to Basidiomycetes fungi. J. Biol. Active Prod. Nat. 9(3), 162–178 (2019)

    Google Scholar 

  22. Seenivasan, A.; Gummadi, S.N.; Pandaa, T.; Théodore, T.: Quantification of lovastatin produced by Monascus purpureus. Open Biotechnol. J. 9, 6–13 (2015)

    Article  Google Scholar 

  23. Chaynika, P.; Srividya, S.: Bioprospecting of lovastatin producing fungi isolated from soil samples. Int. Res. J. Biol. Sci. 3(9), 42–46 (2014)

    Google Scholar 

  24. El-Gendy, M.M.A.; Shaaban, M.; El-Bondkly, A.M.; Shaaban, K.A.: Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces. Appl. Biochem. Biotechnol. 150, 85–96 (2008)

    Article  Google Scholar 

  25. White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W.: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (eds.) PCR Protocols: A Guide to Methods and Applications, pp. 315–322. Academic, New York (1990)

    Google Scholar 

  26. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  Google Scholar 

  27. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K.: MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018)

    Article  Google Scholar 

  28. Tamura, K.; Nei, M.; Kumar, S.: Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. U.S.A. 101, 11030–11035 (2004)

    Article  Google Scholar 

  29. El-Bondkly, A.M.A.: Molecular identification using ITS sequences and genome shuffling to improve 2- deoxyglucose tolerance and xylanase activity of marine-derived fungus, Aspergillus sp. NRCF5. Appl. Biochem. Biotechnol. 167, 2160–2173 (2012)

    Article  Google Scholar 

  30. Augustine, A.; Joseph, I.; Raj, R.P.: Biomass estimation of Aspergillus niger S4 a mangrove fungal isolate and A. oryzae NCIM 1212 in solid-state fermentation. J. Mar. Biol. Assoc. India 48(2), 139–146 (2006)

    Google Scholar 

  31. Espinel-Ingroff, A.; Fothergill, A.; Peter, J.; Rinaldi, M.G.; Walsh, T.J.: Testing conditions for determination of minimum fungicidal concentrations of new and established antifungal agents for Aspergillus sp.: NCCLS collaborative study. J. Clin. Microbiol. 40, 3204–3208 (2002)

    Article  Google Scholar 

  32. Masadeh, M.; Mhaidat, N.; Alzoubi, K.; Al-azzam, S.; Alnasser, Z.: Antibacterial activity of statins: a comparative study of atorvastatin, simvastatin, and rosuvastatin. Ann. Clin. Microbiol. Antimicrob. 11(1), 13 (2012)

    Article  Google Scholar 

  33. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983)

    Article  Google Scholar 

  34. Subhan, M.; Faryal, R.; Macreadie, I.: Exploitation of Aspergillus terreus for the production of natural statins. J. Fungi 2, 13 (2016)

    Article  Google Scholar 

  35. Mulder, K.C.L.; Mulinari, F.; Franco, O.L.; Soares, M.S.F.; Magalhães, B.S.; Parachin, N.S.: Lovastatin production: from molecular basis to industrial process optimization. Biotechnol. Adv. 33(6 Pt 1), 648–665 (2015)

    Article  Google Scholar 

  36. Banos, S.; Lentendu, G.; Kopf, A.; Wubet, T.; Glöckner, F.O.; Reich, M.: A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol. 19, 190 (2018)

    Article  Google Scholar 

  37. Hasan, H.; Abd Rahim, M.H.; Campbell, L.; Carter, D.; Abbas, A.; Montoya, A.: Improved lovastatin production by inhibiting (+)-geodin biosynthesis in Aspergillus terreus. New Biotechnol. 25(52), 19–24 (2019)

    Article  Google Scholar 

  38. Ramachandran, S.; Patel, A.K.; Nampoothiri, K.M.; Chandran, S.; Szakacs, G.; Soccol, C.R.; Pandey, A.: Alpha amylase from a fungal culture grown on oil cakes and its properties. Braz. Arch. Biol. Technol. 47(2), 309–317 (2004)

    Article  Google Scholar 

  39. Steudler, S.; Werner, A.; Cheng, J.J.: Solid state fermentation: research and industrial applications. In: Scheper, T. (ed.) Advances in Biochemical Engineering/Biotechnology, vol. 169. Springer, Cham (2019)

    Google Scholar 

  40. Jaivel, N.; Marimuthu, P.: Optimization of lovastatin production in solid state fermentation by Aspergillus terreus. Int. J. Eng. Sci. Technol. 2, 2730–2733 (2010)

    Google Scholar 

  41. Lai, L.S.T.; Hung, C.S.H.; Lo, C.C.: Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillu terreus ATCC 20542. J. Biosci. Bioeng. 104, 9–13 (2007)

    Article  Google Scholar 

  42. Chanakya, P.; Latha, P.M.; Manipati, S.M.: Solid state fermentation for the production of lovastatin by Aspergillus fischerii. Res. J. Pharm. Sci. Biotechnol. 1, 9–13 (2011)

    Google Scholar 

  43. Gulyamova, T.G.; Ruzieva, D.M.; Nasmetova, S.M.; Sattarova, R.S.; Lobanova, K.V.; Abdulmyanova, L.A.; Rasulova, G.A.: Lovastatin production by Aspergillus terreus in solid state and submerged fermentations. Int. J. Eng. Sci. Technol. 5(3), 19–24 (2013)

    Article  Google Scholar 

  44. Kamath, P.V.; Dwarakanath, B.S.; Chaudhary, A.; Janakiraman, S.: Optimization of culture conditions for maximal lovastatin production by Aspergillus terreus (KM017963) under solid state fermentation. HAYATI J. Biosci. 22(4), 174–180 (2015)

    Article  Google Scholar 

  45. Marcin, B.; Stanislaw, L.: Physiological, morphological and kinetic aspects of lovastatin biosynthesis by Aspergillus terreus. Biotechnol. J. 4, 1–61 (2009)

    Article  Google Scholar 

  46. Osman, M.E.; Khattab, O.H.; Zaghlol, G.M.; Abd El-Hameed, R.M.: Screening for the production of cholesterol lowering drugs (lovastatin) by some fungi. Aust. J. Basic Appl. Sci. 5(6), 698–703 (2011)

    Google Scholar 

  47. Wei, P.L.; Xu, Z.N.; Cen, P.L.: Lovastatin production by Aspergillus terreus in solid-state fermentation. J. Zhejiang Univ. 8(9), 1521–1526 (2007)

    Article  Google Scholar 

  48. Raghunath, R.; Radhakrishna, A.; Manikandan, N.; Nathiya, K.; Palaniswamy, M.: Optimized production of lovastatin through solid state fermentation by endophytic fungi. Int. J. Pharma Bio Sci. 3(3), 562–570 (2012)

    Google Scholar 

  49. Jahromi, M.F.; Liang, J.B.; Ho, Y.W.; Mohamad, R.; Goh, Y.M.; Shokryazdan, P.: Lovastatin production by Aspergillus terreus using agro-biomass as substrate in solid state fermentation. J. Biomed. Biotechnol. 2012, 196264 (2012)

    Google Scholar 

  50. Valera, H.R.; Gomes, J.; Lakshmi, S.; Gurujara, R.; Suryanarayan, S.; Kumar, D.: Lovastatin production by solid state fermentation using Aspergillus flavipes. Enzyme Microb. Technol. 37, 521–526 (2005)

    Article  Google Scholar 

  51. El-Gendy, M.M.A.A.; Abdel-Wahhab, K.G.; Mannaa, F.A.; Farghaly, A.A.; El-Bondkly, A.M.A.: Carcinogenic activities and sperm abnormalities of methicillin resistance Staphylococcus aureus and inhibition of their virulence potentials by ayamycin. Appl. Biochem. Biotechnol. 183(3), 833–852 (2017)

    Article  Google Scholar 

  52. Shahzad, S.; Willcox, M.; Shahzadm, A.: Identification of novel in vitro antibacterial action of cloprostenol and evaluation of other non-antibiotics against multi-drug resistant A. baumannii. J. Antibiot. 73, 72–75 (2020)

    Article  Google Scholar 

  53. Subhan, M.; Sabir, S.B.; Akhtar, Y.; Khan, S.; Macreadie, I.; Frayal, R.: Isolation and characterization of lovastatin producing fungi; investigating the antimicrobial and extracellular enzymatic activities. Int. J. Biosci. 10(2), 12–20 (2017)

    Article  Google Scholar 

  54. Gyetvai, A.; Emri, T.; Takacs, K.; Dergez, T.; Fekete, A.; Pesti, M.; Pocsi, I.; Lenkey, B.: Lovastatin possesses a fungistatic effect against Candida albicans, but does not trigger apoptosis in this opportunistic human pathogen. FEMS Yeast Res. 6, 1140–1148 (2006)

    Article  Google Scholar 

  55. Chamilos, G.; Lewis, R.E.; Kontoyiannis, D.P.: Lovastatin has significant activity against Zygomycetes and interacts synergistically with voriconazole. Antimicrob. Agents Chemother. 50(1), 96–103 (2006)

    Article  Google Scholar 

  56. Alexandrova, R., Dinev, D., Glavcheva, M., Danova, J., Yetik-Anacak, G., Krasilnikova, J., Podlipnik, C.: Briefly about anticancer properties of statins. Biomed. J. Sci. Tech. Res. 17(2), MS.ID.002975 (2019)

  57. Mo, Y.; Wang, Y.; Xiong, F.; Ge, X.; Li, Z.; Xiayu, L.; Li, Y.; Li, X.; Xiong, W.; Li, G.; Zeng, Z.: Proteomic analysis of the molecular mechanism of lovastatin inhibiting the growth of nasopharyngeal carcinoma cells. J. Cancer 10(10), 2342–2349 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. A. El-Bondkly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Bondkly, A.A.M., El-Gendy, M.M.A.A. & El-Bondkly, A.M.A. Construction of Efficient Recombinant Strain Through Genome Shuffling in Marine Endophytic Fusarium sp. ALAA-20 for Improvement Lovastatin Production Using Agro-Industrial Wastes. Arab J Sci Eng 46, 175–190 (2021). https://doi.org/10.1007/s13369-020-04925-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04925-5

Keywords

Navigation