Skip to main content

Advertisement

Log in

Isolation of Plant Growth-Promoting Bacillus cereus from Soil and Its Use as a Microbial Inoculant

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Modernization has introduced intensive agricultural practices wherein the pesticides play an important role both in stabilization and in increase of agricultural products. As a consequence, humans and members of other ecosystems are exposed to increased levels of compounds that have detrimental effects on their health, thereby signifying the importance of microbial inoculants. In order to achieve this goal 7 different bacterial species were initially screened for isolation of plant growth-promoting Bacillus sp. The isolate CUAMS116 was confirmed to be Bacillus cereus through biochemical and molecular characterization. The in vitro plant growth-promoting ability of the isolate was screened through standard tests. Different concentrations of bacterial inoculant (25%, 50%, 75%, 100%) were evaluated for its plant growth promotion ability using Phaseolus vulgaris L., under pot culture conditions. At the harvest stage, the mature control plants measured 16.53 cm and mean treated plant height was measured to be 27.75 cm, showing a maximum percentage increase in length of 67.87%. The results suggested that the B. cereus CUAMS116 isolated in this study can be extended as a PGPM through further field trials in other plants for improving crop yield and tolerance to biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walker, T.S.; Bais, H.P.; Grotewold, E.; Vivanco, J.M.: Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51 (2003). https://doi.org/10.1104/pp.102.019661

    Article  Google Scholar 

  2. Zablotowicz, R.M.; Tipping, E.M.; Lifshitz, R.; Kloepper, J.W.: Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister, D.L., Cregan, P.B. (eds.) The Rhizosphere and Plant Growth. Beltsville Symposia in Agricultural Research. Springer, Dordrecht (1991). https://doi.org/10.1007/978-94-011-3336-4_70

    Chapter  Google Scholar 

  3. Compant, S.; Samad, A.; Faist, H.; Sessitsch, A.: A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019). https://doi.org/10.1016/j.jare.2019.03.004

    Article  Google Scholar 

  4. Glick, B.R.: Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012, 963401 (2012). https://doi.org/10.6064/2012/963401

    Article  Google Scholar 

  5. Compant, S.; Duffy, B.; Nowak, J.; Clément, C.; Barka, E.A.: Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71, 4951–4959 (2005). https://doi.org/10.1128/AEM.71.9.4951-4959.2005

    Article  Google Scholar 

  6. Kloepper, J.W.: Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology 71, 642–644 (1981). https://doi.org/10.1094/phyto-71-642

    Article  Google Scholar 

  7. Anderson, A.J.: Responses of bean to root colonization with Pseudomonas putida in a hydroponic system. Phytopathology 75, 992–995 (1985). https://doi.org/10.1094/phyto-75-992

    Article  Google Scholar 

  8. Bahme, J.B.; Schroth, M.N.; Van Gundy, S.D.; Weihold, A.R.; Tolentino, D.M.: Effect of inocula delivery systems on rhizobacterial colonization of underground organs of potato. Phytopathology 78, 534–542 (1988)

    Article  Google Scholar 

  9. Yadav, B.K.; Akhtar, M.S.; Panwar, J.: Rhizospheric plant-microbe interactions: key factors to soil fertility and plant nutrition. In: Arora, N. (ed.) Plant Microbes Symbiosis: Applied Facets. Springer, New Delhi (2015). https://doi.org/10.1007/978-81-322-2068-8_6

    Chapter  Google Scholar 

  10. Stamenković, S.; Beškoski, V.; Karabegović, I.; Lazić, M.; Nikolić, N.: Microbial fertilizers: a comprehensive review of current findings and future perspectives. Span. J. Agric. Res. 16, e09R01 (2018). https://doi.org/10.5424/sjar/2018161-12117

    Article  Google Scholar 

  11. Kaminsky, L.M.; Trexler, R.V.; Malik, R.J.; Hockett, K.L.; Bell, T.H.: The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol. 37, 140–151 (2019). https://doi.org/10.1016/j.tibtech.2018.11.011

    Article  Google Scholar 

  12. Botelho, G.R.; Mendonça-Hagler, L.C.: Fluorescent Pseudomonads associated with the rhizosphere of crops: an overview. Braz. J. Microbiol. 37, 401–416 (2006). https://doi.org/10.1590/s1517-83822006000400001

    Article  Google Scholar 

  13. Barrett, R.D.H.; MacLean, R.C.; Bell, G.: Experimental evolution of Pseudomonas fluorescens in simple and complex environments. Am. Nat. 166, 470–480 (2005). https://doi.org/10.1086/444440

    Article  Google Scholar 

  14. Brown, M.E.: Seed and root bacterization. Annu. Rev. Phytopathol. 12, 181–197 (1974). https://doi.org/10.1146/annurev.py.12.090174.001145

    Article  Google Scholar 

  15. Niu, D.-D.; Liu, H.-X.; Jiang, C.-H.; Wang, Y.-P.; Wang, Q.-Y.; Jin, H.-L.; Guo, J.-H.: The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol. Plant Microbe Interact. 24, 533–542 (2011). https://doi.org/10.1094/MPMI-09-10-0213

    Article  Google Scholar 

  16. Niu, D.-D.; Wang, C.-J.; Guo, Y.-H.; Jiang, C.-H.; Zhang, W.-Z.; Wang, Y.-P.; Guo, J.-H.: The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces resistance in tomato with induction and priming of defence response. Biocontrol Sci. Technol. 22(9), 991–1004 (2012). https://doi.org/10.1080/09583157.2012.706595

    Article  Google Scholar 

  17. Hassan, T.; Naz, I.; Hussain, M.: Bacillus cereus: a competent plant growth promoting bacterium of saline sodic field. Pak. J. Bot. 50, 1029–1037 (2018)

    Google Scholar 

  18. Akinrinlola, R.J.; Yuen, G.Y.; Drijber, R.A.; Adesemoye, A.O.: Evaluation of Bacillus strains for plant growth promotion and predictability of efficacy by in vitro physiological traits. Int. J. Microbiol. (2018). https://doi.org/10.1155/2018/5686874

    Article  Google Scholar 

  19. Zeng, Q.; Xie, J.; Li, Y.; Gao, T.; Xu, C.; Wang, Q.: Comparative genomic and functional analyses of four sequenced Bacillus cereus genomes reveal conservation of genes relevant to plant-growth-promoting traits. Sci. Rep. 8, 17009 (2018). https://doi.org/10.1038/s41598-018-35300-y

    Article  Google Scholar 

  20. Calvo, P.; Watts, D.B.; Kloepper, J.W.; Torbert, H.A.: Application of microbial-based inoculants for reducing N2O emissions from soil under two different ammonium nitrate-based fertilizers. Soil Sci. (2016). https://doi.org/10.1097/SS.0000000000000176

    Article  Google Scholar 

  21. Kumar, A.; Kumar, A.; Devi, S.; Patil, S.; Payal, C.; Negi, S.: Isolation, screening and characterization of bacteria from Rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Recent Res. Sci. Technol. 4(1), 1–5 (2012)

    Google Scholar 

  22. Lugtenberg, B.; Kamilova, F.: Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009). https://doi.org/10.1146/annurev.micro.62.081307.162918

    Article  Google Scholar 

  23. Jatav, P.; Gupta, A.; Singh Ahirwar, S.; Jatav, S.; Jatav, A.; Kushwaha, K.: Production of plant growth hormones indole-3-acetic acid (IAA) using bacillus by batch fermentation. GJBB 6, 612–616 (2017)

    Google Scholar 

  24. Nautiyal, C.S.; Shekhar Nautiyal, C.: An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170(1), 265–270 (1999). https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

    Article  Google Scholar 

  25. Afsharmanesh, H.: Characterization of the antagonistic activity of a new indigenous strain of Pseudomonas fluorescens isolated from onion rhizosphere. JPP 92, 187–194 (2010)

    Google Scholar 

  26. Bhatt, P.: Screening and characterization of plant growth and health promoting rhizobacteria. Int. J. Curr. Microbiol. Appl. Sci. 3, 139–155 (2014)

    Google Scholar 

  27. Bakker, A.W.; Schippers, B.: Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation. Soil Biol. Biochem. 19, 451–457 (1987). https://doi.org/10.1016/0038-0717(87)90037-x

    Article  Google Scholar 

  28. Ahemad, M.; Kibret, M.: Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King Saud Univ. Sci. 26, 1–20 (2014). https://doi.org/10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  29. Ajay, K.; Amit, K.; Shikha, D.; Sandip, P.; Chandani, P.; Sushila, N.: Isolation, screening and characterization of bacteria from Rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Res. Sci. 4, 1–5 (2012). https://doi.org/10.1007/s13213-014-0977-x

    Article  Google Scholar 

  30. Amalraj, L.D.: Effect of polymeric additives, adjuvants, surfactants on survival, stability and plant growth promoting ability of liquid bioinoculants. J. Plant Physiol. Pathol. (2013). https://doi.org/10.4172/2329-955x.1000105

    Article  Google Scholar 

  31. Kobayashi, T.; Nishizawa, N.K.: Iron uptake, translocation, and regulation in higher plants. Plant Cell Physiol. 28, 1081–1092 (2012). https://doi.org/10.1146/annurev-arplant-042811-105522

    Article  Google Scholar 

  32. Dixon, R.; Kahn, D.: Genetic regulation of biological nitrogen fixation. Nat. Rev. Microbiol. 2, 621–631 (2004). https://doi.org/10.1038/nrmicro954

    Article  Google Scholar 

  33. Neilands, J.B.: Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270, 26723–26726 (1995). https://doi.org/10.1074/jbc.270.45.26723

    Article  Google Scholar 

  34. Krewulak, K.D.; Vogel, H.J.: Structural biology of bacterial iron uptake. Biochimica et Biophysica Acta (BBA)-Biomembranes 1778, 1781–1804 (2008). https://doi.org/10.1016/j.bbamem.2007.07.026

    Article  Google Scholar 

  35. Ambrosini, A.; Beneduzi, A.; Stefanski, T.; Pinheiro, F.G.; Vargas, L.K.; Passaglia, L.M.P.: Screening of plant growth promoting Rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil 356, 245–264 (2012). https://doi.org/10.1007/s11104-011-1079-1

    Article  Google Scholar 

  36. de Souza, R.; de Souza, R.; Beneduzi, A.; Ambrosini, A.; da Costa, P.B.; Meyer, J.; Vargas, L.K.; Schoenfeld, R.; Passaglia, L.M.P.: The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366, 585–603 (2013). https://doi.org/10.1007/s11104-012-1430-1

    Article  Google Scholar 

  37. de Souza, R.; de Souza, R.; Meyer, J.; Schoenfeld, R.; da Costa, P.B.; Passaglia, L.M.P.: Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann. Microbiol. 65, 951–964 (2015). https://doi.org/10.1007/s13213-014-0939-3

    Article  Google Scholar 

  38. Szilagyi-Zecchin, V.J.; Ikeda, A.C.; Hungria, M.; Adamoski, D.; Kava-Cordeiro, V.; Glienke, C.; Galli-Terasawa, L.V.: Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express. 4, 26 (2014). https://doi.org/10.1186/s13568-014-0026-y

    Article  Google Scholar 

  39. Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq Boyce, A.: Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules (2016). https://doi.org/10.3390/molecules21050573

    Article  Google Scholar 

  40. Vessey, J.K.: Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571–586 (2003). https://doi.org/10.1023/A:1026037216893

    Article  Google Scholar 

  41. Libbert, E.; Manteuffel, R.: Interactions between plants and epiphytic bacteria regarding their auxin metabolism: VII. The influence of the epiphytic bacteria on the amount of diffusible auxin from corn coleoptiles. Physiol Plant. 23, 93–98 (1970). https://doi.org/10.1111/j.1399-3054.1970.tb06395.x

    Article  Google Scholar 

  42. Mohite, B.: Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant Nutr. 13, 638–649 (2013). https://doi.org/10.4067/s0718-95162013005000051

    Article  Google Scholar 

  43. Khan, M.S.; Zaidi, A.; Wani, P.A.; Oves, M.: Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ. Chem. Lett. 7, 1–19 (2009)

    Article  Google Scholar 

  44. Tao, G.-C.; Guang-Can, T.A.O.; Tian, S.-J.; Miao-Ying, C.A.I.; Guang-Hui, X.I.E.: Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soils. Pedosphere 18, 515–523 (2008). https://doi.org/10.1016/s1002-0160(08)60042-9

    Article  Google Scholar 

  45. Zaidi, A.; Khan, S.: Interactive effect of rhizotrophic microorganisms on growth, yield, and nutrient uptake of wheat. J. Plant Nutr. 28(12), 2079–2092 (2005). https://doi.org/10.1080/01904160500320897

    Article  Google Scholar 

  46. El-Tarabily, K.A.: Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308, 161–174 (2008). https://doi.org/10.1007/s11104-008-9616-2

    Article  Google Scholar 

  47. Someya, N.; Tsuchiya, K.; Sugisawa, S.; Noguchi, M.T.; Yoshida, T.: Growth promotion of lettuce (Lactuca sativa L.) by a rhizobacterium Pseudomonas fluorescens strain LRB3W1 under iron-limiting condition. Environ. Control Biol. 46, 139–146 (2008). https://doi.org/10.2525/ecb.46.139

    Article  Google Scholar 

  48. Muthezhilan, R.; Sindhuja, B.S.; Hussain, A.J.; Jayaprakashvel, M.: Efficiency of plant growth promoting rhizobacteria isolated from sand dunes of Chennai coastal area. Pak. J. Biol. Sci. 15, 795–799 (2012). https://doi.org/10.3923/pjbs.2012.795.799

    Article  Google Scholar 

  49. Trivedi, P.; Pandey, A.: Plant growth promotion abilities and formulation of Bacillus megaterium strain B 388 (MTCC6521) isolated from a temperate Himalayan location. Indian J. Microbiol. 48, 342–347 (2008). https://doi.org/10.1007/s12088-008-0042-1

    Article  Google Scholar 

  50. Anand, R.; Kulothungan, S.: Antifungal metabolites of Pseudomonas fluorescens against crown rot pathogen of Arachis hypogaea. Ann. Biol. Res. 1, 199–207 (2010)

    Google Scholar 

  51. Blumer, C.; Heeb, S.; Pessi, G.; Haas, D.: Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc. Natl. Acad. Sci. USA 96, 14073–14078 (1999). https://doi.org/10.1073/pnas.96.24.14073

    Article  Google Scholar 

  52. Selvakumar, G.; Kundu, S.; Gupta, A.D.; Shouche, Y.S.; Gupta, H.S.: Isolation and characterization of nonrhizobial plant growth promoting bacteria from nodules of Kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Curr. Microbiol. 56, 134–139 (2008). https://doi.org/10.1007/s00284-007-9062-z

    Article  Google Scholar 

  53. Marschner, H.; Römheld, V.; Horst, W.J.; Martin, P.: Root-induced changes in the rhizosphere: importance for the mineral nutrition of plants. Zeitschrift für Pflanzenernährung und Bodenkunde 149, 441–456 (1986). https://doi.org/10.1002/jpln.19861490408

    Article  Google Scholar 

  54. Christiansen, J.S.; Jørgensen, E.H.; Jobling, M.: Oxygen consumption in relation to sustained exercise and social stress in Arctic charr (Salvelinus alpinus L.). J. Exp. Zool. 260, 149–156 (1991). https://doi.org/10.1002/jez.1402600203

    Article  Google Scholar 

  55. Joseph, B.; Ranjan Patra, R.; Lawrence, R.: Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int. J. Plant Prod. 1, 141–152 (2012). https://doi.org/10.22069/ijpp.2012.532

    Article  Google Scholar 

  56. Yolcu, H.; Adem, G.; Gullap, K.M.; Cakmakci, R.: Effects of plant growth-promoting rhizobacteria on some morphologic characteristics, yield and quality contents of Hungarian Vetch. Turk. J. Field Crops. 17, 208–214 (2012)

    Google Scholar 

  57. Babu, S.; Prasanna, R.; Bidyarani, N.; Nain, L.; Shivay, Y.S.: Synergistic action of PGP agents and Rhizobium spp. for improved plant growth, nutrient mobilization and yields in different leguminous crops. Biocatal. Agric. Biotechnol. 4, 456–464 (2015). https://doi.org/10.1016/j.bcab.2015.09.004

    Article  Google Scholar 

  58. Kumbar, B.; Mahmood, R.; Nagesha, S.N.; Nagaraja, M.S.; Prashant, D.G.; Kerima, O.Z.; Karosiya, A.; Chavan, M.: Field application of Bacillus subtilis isolates for controlling late blight disease of potato caused by Phytophthora infestans. Biocatal. Agric. Biotechnol. 22, 101366 (2019). https://doi.org/10.1016/j.bcab.2019.101366

    Article  Google Scholar 

Download references

Acknowledgements

Authors are indebted to the Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, India, and the Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India, for providing the necessary facilities to execute the planned research work. Authors also acknowledge Barcode Biosciences, Bangalore, Karnataka, India, for providing 16S rRNA Sequencing facility.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mridul Umesh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastian, A.M., Umesh, M., Priyanka, K. et al. Isolation of Plant Growth-Promoting Bacillus cereus from Soil and Its Use as a Microbial Inoculant. Arab J Sci Eng 46, 151–161 (2021). https://doi.org/10.1007/s13369-020-04895-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04895-8

Keywords

Navigation