Skip to main content
Log in

A Numerical Simulation for Transport of Hybrid Nanofluid

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Hybrid nanofluids are used to enhance therapeutic effects and reduce the side effects in tumour therapy. These nanoparticles are transported nearest to the cancer’s tissues under the action of the peristaltic waves generated on the walls of the blood vessel. The motion of hybrid nanoparticles in non-uniform vertical channel having flexible boundaries is numerically elaborated in present study. Poisson equations are used on the basis of electro-osmotic theory to encounter the phenomena of applied electric field on the walls of the channel. Lubrication approach and Debye–Huckel linearization approximations are utilized to obtain the system of coupled ordinary differential equations from the basic conservation laws which are solved by using implicit finite difference scheme which is commonly known as Keller–Box method and MATLAB built in subroutine Bvp5c. The impact of electro-osmotic parameter on all features of flow of nanoparticles observed through several graphs and various tables. The current study is applicable and helpful in the design of micropumps and nanomedicine technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Latham, T. W.: Fluid Motions in a Peristaltic Pump (Doctoral dissertation, Massachusetts Institute of Technology)

  2. Wang, Y.; Hayat, T.; Ali, N.; Oberlack, M.: Magnetohydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel. Phys. A Stat. Mech. Appl. 387(2–3), 347–362 (2008)

    MathSciNet  Google Scholar 

  3. Hayat, T.; Ali, N.; Asghar, S.; Siddiqui, A.M.: Exact peristaltic flow in tubes with an endoscope. Appl. Math. Comput. 182(1), 359–368 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Ali, N.; Abbasi, A.; Ahmad, I.: Channel flow of Ellis fluid due to peristalsis. AIP Adv. 5(9), 097214 (2015)

    Google Scholar 

  5. Ahmad, I.; Ali, N.; Abbas, A.; Aziz, W.; Hussain, M.; Ahmad, M.: Flow of a Burger’s fluid in a channel induced by peristaltic compliant walls. J. Appl. Math. 2014, 12 (2015)

    MATH  Google Scholar 

  6. Abbasi, A.; Farooq, W.; Ali, N.; Ahmad, I.: Simultaneous effects of Brownian motion, thermophoresis and curvature on peristaltic flow of an Oldroyd 4-constant fluid. J Nanofluids 8(4), 736–745 (2019)

    Google Scholar 

  7. Reuss, F.F.: Sur un nouvel effet de l’électricité galvanique. Mem. Soc. Imp. Nat. Mosc. 2, 327–337 (1809)

    Google Scholar 

  8. Dukhin, S.S.: Electrokinetic phenomena of the second kind and their applications. Adv. Coll. Interface Sci. 1(35), 173–196 (1991)

    Google Scholar 

  9. Casagrande, L.: Electro-osmotic stabilization of soils. J. Boston Soc. Eng. 39, 51–83 (1952)

    Google Scholar 

  10. Sadr, R.; Yoda, M.; Zheng, Z.; Conlisk, A.T.: An experimental study of electro-osmotic flow in rectangular microchannels. J. Fluid Mech. 506, 357–367 (2004)

    MATH  Google Scholar 

  11. Chakraborty, S.: Augmentation of peristaltic microflows through electro-osmotic mechanisms. J. Phys. D Appl. Phys. 39(24), 5356 (2006)

    Google Scholar 

  12. Bandopadhyay, A.; Tripathi, D.; Chakraborty, S.: Electroosmosis-modulated peristaltic transport in microfluidic channels. Phys. Fluids 28(5), 052002 (2016)

    Google Scholar 

  13. Tripathi, D.; Bhushan, S.; Bég, O.A.: Analytical study of electro-osmosis modulated capillary peristaltic hemodynamics. J. Mech. Med. Biol 17(03), 1750052 (2017)

    Google Scholar 

  14. Tripathi, D.; Bhushan, S.; Bég, O.A.: Unsteady viscous flow driven by the combined effects of peristalsis and electro-osmosis. Alex. Eng. J. 57(3), 1349–1359 (2018)

    Google Scholar 

  15. Hussain, S.; Ali, N.; Ullah, K.: Peristaltic flow of Phan-Thien-Tanner fluid: effects of peripheral layer and electro-osmotic force. Rheol. Acta 58(9), 603–618 (2019)

    Google Scholar 

  16. Vajravelu, K.; Radhakrishnamacharya, G.; Radhakrishnamurty, V.: Peristaltic flow and heat transfer in a vertical porous annulus, with long wave approximation. Int. J. Non-Linear Mech. 42(5), 754–759 (2007)

    MATH  Google Scholar 

  17. Tang, G.; Yan, D.; Yang, C.; Gong, H.; Chai, J.C.; Lam, Y.C.: Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels. Electrophoresis 27(3), 628–639 (2006)

    Google Scholar 

  18. Horiuchi, K.; Dutta, P.; Hossain, A.: Joule-heating effects in mixed electroosmotic and pressure-driven microflows under constant wall heat flux. J. Eng. Math. 54(2), 159 (2006)

    MATH  Google Scholar 

  19. Narla, V.K.; Tripathi, D.; Bég, O.A.: Analysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with joule dissipation. Therm. Sci. Eng. Progress 1(15), 100424 (2020)

    Google Scholar 

  20. Patel, D.J.; Mistri, P.A.; Prajapati, J.J.: Treatment of cancer by using nanoparticles as a drug delivery. Int. J. Drug Dev. Res. 4(1), 14–27 (2012)

    Google Scholar 

  21. McCarroll, J.; Teo, J.; Boyer, C.; Goldstein, D.; Kavallaris, M.; Phillips, P.: Potential applications of nanotechnology for the diagnosis and treatment of pancreatic cancer. Front Physiol 24(5), 2 (2014)

    Google Scholar 

  22. Purushotham, S.; Ramanujan, R.V.: Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater. 6(2), 502–510 (2010)

    Google Scholar 

  23. Abbasi, F.M.; Hayat, T.; Ahmad, B.: Peristalsis of silver-water nanofluid in the presence of Hall and Ohmic heating effects: applications in drug delivery. J. Mol. Liq. 1(207), 248–255 (2015)

    Google Scholar 

  24. Kothandapani, M.; Prakash, J.: The peristaltic transport of Carreau nanofluids under effect of a magnetic field in a tapered asymmetric channel: application of the cancer therapy. J. Mech. Med. Biol. 15(03), 1550030 (2015)

    Google Scholar 

  25. Zaman, A.; Ali, N.; Khan, A.A.: Computational biomedical simulations of hybrid nanoparticles on unsteady blood hemodynamics in a stenotic artery. Math. Comput. Simul. 1(169), 117–132 (2020)

    MathSciNet  Google Scholar 

  26. Hayat, T.; Nadeem, S.: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys. 7, 2317–2324 (2017)

    Google Scholar 

  27. Hayat, T.; Nadeem, S.; Khan, A.U.: Rotating flow of Ag–CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects. Eur. Phys. J. E 41(6), 75 (2018)

    Google Scholar 

  28. Hayat, T.; Nadeem, S.; Khan, A.U.: Numerical analysis of Ag–CuO/water rotating hybrid nanofluid with heat generation and absorption. Can. J. Phys. 97(6), 644–650 (2019)

    Google Scholar 

  29. Nadeem, S.; Nadeem, A.; Khan, A.U.: Characteristics of three dimensional stagnation point flow of Hybrid nanofluid past a circular cylinder. Results Phys. 8, 829–835 (2018)

    Google Scholar 

  30. Nadeem, S.; Nadeem, A.: On both MHD and slip effect in micropolar hybrid nanofluid past a circular cylinder under stagnation point region. Can. J. Phys. 97(4), 392–399 (2019)

    Google Scholar 

  31. Abbas, N.; Malik, M.Y.; Nadeem, S.; Alarifi, I.M.: On extended version of Yamada-Ota and Xue models of hybrid nanofluid on moving needle. Eur. Phys. J. Plus 135(2), 145 (2020)

    Google Scholar 

  32. Abbas, N.; Malik, M.Y.; Nadeem, S.: Transportation of magnetized micropolar hybrid nanomaterial fluid flow over a Riga curface surface. Comput. Methods Programs Biomed. 185, 105136 (2020)

    Google Scholar 

  33. Ghalambaz, M.; Doostani, A.; Izadpanahi, E.; Chamkha, A.J.: Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. J. Therm. Anal. Calorim. 139(3), 2321–2336 (2020)

    Google Scholar 

  34. Babazadeh, H.; Shah, Z.; Ullah, I.; Kumam, P.; Shafee, A.: Analysis of hybrid nanofluid behavior within a porous cavity including Lorentz forces and radiation impacts. J. Therm. Anal. Calorim. 1–9 (2020)

  35. Tayebi, T.; Chamkha, A.J.: Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder. J. Therm. Anal. Calorim. 139(3), 2165–2179 (2020)

    Google Scholar 

  36. Khan, M.I.; Hafeez, M.U.; Hayat, T.; Khan, M.I.; Alsaedi, A.: Magneto rotating flow of hybrid nanofluid with entropy generation. Comput. Methods Programs Biomed. 183, 105093 (2020)

    Google Scholar 

  37. Khanafer, K.; Vafai, K.: The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery. Heat Mass Transf. 42(10), 939 (2006)

    Google Scholar 

  38. Nicholson, C.: Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Phys. 64(7), 815 (2001)

    Google Scholar 

  39. Dash, R.K.; Mehta, K.N.; Jayaraman, G.: Casson fluid flow in a pipe filled with a homogeneous porous medium. Int. J. Eng. Sci. 34(10), 1145–1156 (1996)

    MATH  Google Scholar 

  40. Sharma, M.K.; Bansal, K.; Bansal, S.: Pulsatile unsteady flow of blood through porous medium in a stenotic artery under the influence of transverse magnetic field. Korea-Aust. Rheol. J. 24(3), 181–189 (2012)

    Google Scholar 

  41. Tripathi, D.; Bég, O.A.; Gupta, P.K.; Radhakrishnamacharya, G.; Mazumdar, J.: DTM simulation of peristaltic viscoelastic biofluid flow in asymmetric porous media: a digestive transport model. J. Bionic Eng. 12(4), 643–655 (2015)

    Google Scholar 

  42. Abbasi, F.M.; Hayat, T.; Ahmad, B.: Peristaltic transport of copper–water nanofluid saturating porous medium. Phys. E Low-Dimens. Syst. Nanostruct. 67, 47–53 (2015)

    Google Scholar 

  43. Prakash, J.; Tripathi, D.; Bég, O.A.: Comparative study of hybrid nanofuids in microchannel slip fow induced by electroosmosis and peristalsis. Appl Nano Sci 2, 1–4 (2020)

    Google Scholar 

  44. Sun, Z.; Wang, W.; Wang, R.; Duan, J.; Hu, Y.; Ma, J.; Zhou, J.; Xie, S.; Lu, X.; Zhu, Z.; Chen, S.: Aluminum nanoparticles enhance anticancer immune response induced by tumor cell vaccine. Cancer Nanotechnol 1(1), 63 (2010)

    Google Scholar 

  45. Yesilot, S.; Aydin, C.: Silver nanoparticles; a new hope in cancer therapy? Eastern J. Med. 24(1), 111–116 (2019)

    Google Scholar 

  46. Devi, S.A.; Devi, S.S.: Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction. Int. J. Nonlinear Sci. Numer. Simul. 17(5), 249–257 (2016)

    Google Scholar 

  47. Ijaz, S.; Nadeem, S.: Biomedical theoretical investigation of blood mediated nanoparticles (Ag–Al2O3/blood) impact on hemodynamics of overlapped stenotic artery. J. Mol. Liq. 1(248), 809–821 (2017)

    Google Scholar 

  48. Prakash, J.; Siva, E. P.; Balaji, N.; Kothandapani, M.: Effect of peristaltic flow of a third grade fluid in a tapered asymmetric channel. In: Journal of Physics: Conference Series 2018 Apr (Vol. 1000, No. 1, p. 012165). IOP Publishing.

  49. Mustafa, M.; Abbasbandy, S.; Hina, S.; Hayat, T.: Numerical investigation on mixed convective peristaltic flow of fourth grade fluid with Dufour and Soret effects. J. Taiwan Inst. Chem. Eng. 45(2), 308–316 (2014)

    Google Scholar 

  50. Mahmood, K.; Sajid, M.; Ali, N.: Nonorthogonal stagnation-point flow of a second-grade fluid past a lubricated surface. Z für Naturforschung A 71(3), 273–280 (2016)

    Google Scholar 

  51. Abbasi, A.; Riaz, I.; Farooq, W.; Ahmad, M.: Analysis of nonlinear thermal radiation and higher-order chemical reactions on the non-orthogonal stagnation point flow over a lubricated surface. Heat Transf. 49(2), 673–692 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abbasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Farooq, W. A Numerical Simulation for Transport of Hybrid Nanofluid. Arab J Sci Eng 45, 9249–9265 (2020). https://doi.org/10.1007/s13369-020-04704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04704-2

Keywords

Navigation