Skip to main content
Log in

Utilization of Support Vector Models and Gene Expression Programming for Soil Strength Modeling

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The subgrade strength of roads and highways is based on the California bearing ratio (CBR) value. In this investigation, attempts have been made to overcome the limited boundary condition approach by using advanced methods, support vector machine (SVM) and gene expression programming (GEP) for prediction of CBR value. A large and wide range of datasets of different types of soils have been utilized in the analysis. The grain size distribution, Atterberg’s limits and compaction characteristics of soils have been used as the input variables. Best models with different variables were developed by using GEP and the same were used for SVM analysis. The advantage of SVM over others is that it works on the principle of statistical risk minimization. A comparative study of SVM and GEP models indicates that the SVM has better predictability than GEP. Further, it was found that the five-input variable (including gravel content, sand content, plasticity index, maximum dry density and optimum moisture content) model is the best one to predict the CBR value. The detailed statistical analysis including Pearson coefficient correlation (R) and Error analysis have also been carried out. Based upon the statistical analysis, overfitting ratio of SVM was found to be 0.630 against the value of 1.02 in GEP analysis. Further, sensitivity analysis was carried out and it was found that the CBR value is highly dependent on gravel and sand contents. On the other hand, plastic limit plays an insignificant role in determining the CBR value of soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

%E :

Percentage error (%)

ANFIS:

Adaptive network-based fuzzy inference system

ANN:

Artificial neural network

b :

Scalar threshold

BIS:

Bureau of Indian standards

C :

Cost or margin

CBR:

California bearing ratio

CBRExpt :

Experimental California bearing ratio

CBRPred :

Predicted California bearing ratio

CF:

Coarse fraction (G + S)

C u :

Coefficient of uniformity

d :

Degree of polynomial

e :

Loss

ERM:

Empirical risk minimization

ET:

Expression tree

F :

Functional set

FC:

Fine content

G :

Gravel percentage

GA:

Genetic algorithm

GEP:

Gene expression programming

GP:

Genetic programming

G S :

Specific gravity

h :

Head length or head size

I P :

Plasticity index

IS:

Insertion sequence

K :

Kernel functions

k :

Number of support vectors

MAE:

Mean absolute error

MAE:

Mean average error (%)

MS:

Mean of sum of squares

MSE:

Mean square error

N :

Number of data samples

n :

Number of variables

N c :

Number of chromosomes

N g :

Number of genes

OR:

Overfitting ratio

PEV:

Percentage of explained variability

r :

Constant function

R :

Pearson correlation coefficient

R 1 :

One dimensional vector space

R 2 :

Linear coefficient of determination

RBF:

Radial basis function

RIS:

Root insertion sequence

RMSE:

Root mean square error

R n1 :

n-dimensional vector space

S :

Sand percentage

SE:

Standard error

SRM:

Structural risk minimization

SVM:

Support vector machine

SVR:

Support vector regression

SVs:

Support vectors

t :

Tail length

VAF:

Variance ratio

\(W_{{{\text{c}}_{\text{opt}} }}\) :

Optimum water content

WEKA:

Waikato environment for knowledge analysis

W L :

Liquid limit

W LM :

Modified liquid limit

W P :

Plastic limit

W S :

Shrinkage limit

X :

Input variables in datasets

X avg :

Average value of input variable in datasets

X i :

Original value of the input variable

X max :

Maximum value of the input variable

X min :

Minimum value of the input variable

X n :

Normalized value of input variable

X SD :

Standard deviation of input variable

Y :

Output variables in datasets

\(\gamma_{{{\text{d}}_{{\rm max} } }}\) :

Maximum dry density

σ :

Standard deviation

ω :

Weight factor

ε :

Insensitive loss function

References

  1. Purwana, Y.M.; Nikraz, H.; Jitsangiam, P.: Experimental study of suction-monitored cbr test on sand-kaolin clay mixture. Int. J. Geomater. (2012). https://doi.org/10.21660/2012.6.39

    Article  Google Scholar 

  2. Taskiran, T.: Prediction of California bearing ratio (CBR) of fine-grained soils by AI methods. Adv. Eng. Softw. (2010). https://doi.org/10.1016/j.advengsoft.1010.01.003

    Article  Google Scholar 

  3. Yildirim, B.; Gunaydin, O.: Estimation of California bearing ratio by using soft computing systems. Expert Syst. Appl. (2011). https://doi.org/10.1016/j.eswa.2010.12.054

    Article  Google Scholar 

  4. Sukumaran, B.; Kyatham, V.; Shah, A.; Sheth, D.: Suitability of using california bearing ratio test to predict resilient modulus. Airpt. Technol. Transf. Conf. (2002). https://doi.org/10.1016/0266-352X(93)90014-X

    Article  Google Scholar 

  5. Patel, S.R.; Desai, M.D.: CBR predicted by index properties for alluvial soils of South Gujarat. Proc. Indian Geotech. Conf. India 16–18, 79–82 (2010)

    Google Scholar 

  6. Kumar, P.K.J.; Patel, H.Y.M.: Soft computing technique for prediction of CBR from index properties of subgrade. J. Innov. Res. Sci. Eng. Technol, Soil Int (2016). https://doi.org/10.15680/IJIRSET.2016.0507214

    Book  Google Scholar 

  7. Anupama, U.; Harini, H.N.: Prediction of CBR value of coarse-grained soils by soft computing techniques. Int. J. Sci. Res. Sci. Eng. Technol. 2(4), 545–550 (2016)

    Google Scholar 

  8. Katte, V.Y.; Mfoyet, S.M.; Manefouet, B.; Wouatong, A.S.L.; Bezeng, A.L.: Correlation of California Bearing Ratio (CBR) value with soil properties of road subgrade soil. Geotech. Geol. Eng. (2018). https://doi.org/10.1007/s10706-018-0604-x

    Article  Google Scholar 

  9. Vapnik, V.; Golowich, S.; Smola, A.J.: Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing in Neural Information Processing Systems. MIT Press, Cambridge (1997)

    Google Scholar 

  10. Gunn, S.R.: Support vector machines for classification and regression. Technical Report ISIS-1-98, University of Southampton (1998)

  11. Kayadelen, C.; Gunaydin, O.; Fener, M.; Demir, A.; Ozvan, A.: Modeling of the angle of shearing resistance of soils using soft computing systems. Expert Syst. Appl. (2009). https://doi.org/10.1016/j.eswa.2009.04.008

    Article  Google Scholar 

  12. Park, H.I.; Kweon, G.C.; Lee, S.R.: Prediction of resilient modulus of granular subgrade soils and subbase materials using artificial neural network. Road Mater. Pavement Des. (2009). https://doi.org/10.1080/14680629.2009.9690218

    Article  Google Scholar 

  13. Sinaei, H.; Jumaat, H.Z.; Shariati, M.: Numerical investigation on exterior reinforced concrete beam-column joint strengthened by composite fiber reinforced polymer (CFRP). Int. J. Phys. Sci. (2011). https://doi.org/10.5897/IJPS11.1225

    Article  Google Scholar 

  14. Mohammadhassani, M.; Suhatrila, M.; Shariatib, M.; Ghanbari, F.: Ductility and strength assessment of HSC beams with varying of tensile reinforcement ratios. Eng. Mech, Struct (2013). https://doi.org/10.12989/sem.2013.48.6.833

    Book  Google Scholar 

  15. Toghroli, A.; Mohammadhassani, M.; Shariati, M.; Suhatril, M.; Ibrahim, Z.; Sulong, N.H.R.: Prediction of shear capacity of channel shear connectors using the ANFIS model. Struct, Steel Compos (2014). https://doi.org/10.12989/scs.2014.17.5.000

    Book  Google Scholar 

  16. Mohammadhassani, M.; Saleh, A.M.D.; Suhatril, M.; Safa, M.: Fuzzy modelling approach for shear strength prediction of RC deep beams. Syst, Smart Struct (2015). https://doi.org/10.12989/sss.2015.16.3.497

    Book  Google Scholar 

  17. Safa, M.; Shariati, M.; Ibrahim, Z.; Toghroli, A.; Baharom, S.B.; Nor, N.M.; Petkovic, D.: Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength. Steel Compos. Struct. (2016). https://doi.org/10.12989/scs.2016.21.3.679

    Article  Google Scholar 

  18. Toghroli, A.: Applications of the ANFIS and LR Models in the Prediction of Shear Connection in Composite Beams. University of Malaya, Kuala Lumpur (2016)

    Google Scholar 

  19. Mansouri, I.; Safa, M.; Ibrahim, Z.; Kisi, O.; Tahir, M.M.; Baharom, S.; Azimi, M.: Strength prediction of rotary brace damper using MLR and MARS. Struct. Eng. Mech. (2016). https://doi.org/10.12989/sem.2016.60.3.471

    Article  Google Scholar 

  20. Toghroli, A.; Suhatril, M.; Ibrahim, Z.; Safa, M.; Shariati, M.; Shamshirband, S.: Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam. J. Intell. Manuf. (2016). https://doi.org/10.1007/s10845-016-1217-y

    Article  Google Scholar 

  21. Sedghi, Y.; Zandi, Y.; Shariati, M.; Ahmadi, E.; Azar, V.M.; Toghroli, A.; Safa, M.; Mohamad, E.T.; Khorami, M.; Wakil, K.: Application of ANFIS technique on performance of C and L shaped angle shear connectors. Smart Struct. Syst. (2018). https://doi.org/10.12989/sss.2018.22.3.335

    Article  Google Scholar 

  22. Paknahad, M.; Shariati, M.; Sedghi, Y.; Bazzaz, M.; Khorami, M.: Shear capacity equation for channel shear connectors in steel-concrete composite beams. Steel Compos. Struct. (2018). https://doi.org/10.12989/scs.2018.28.4.483

    Article  Google Scholar 

  23. Safa, M.; Wakil, K.; Khorami, M.; Shariati, M.; Toghrali, A.: Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors. Smart Struct. Syst. 1, 2 (2018). https://doi.org/10.12989/sss.2018.22.4.413

    Article  Google Scholar 

  24. Toghroli, A.; Darvishmoghaddam, E.; Zandi, Y.; Parvan, M.; Safa, M.; Mu’azu, M.A.; Heydari, A.; Wakil, K.; Gebreel, S.A.M.; Khorami, M.: Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method. Comput. Concr. 1, 2 (2018). https://doi.org/10.12989/cac.2018.21.5.525

    Article  Google Scholar 

  25. Armaghani, D.J.; Hasanipanah, M.; Amnieh, H.B.; Bui, D.T.; Mehrabi, P.; Khorami, M.: Development of a novel hybrid intelligent model for solving engineering problems using GS-GMDH algorithm. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00769-2

    Article  Google Scholar 

  26. Shariati, M.; Trung, N.T.; Wakil, K.; Mehrabi, P.; Safa, M.; Khoram, M.: Moment-rotation estimation of steel rack connection using extreme learning machine. Steel Compos. Struct. (2019). https://doi.org/10.12989/scs.2019.31.5.427

    Article  Google Scholar 

  27. Trung, N.T.; Shahgoli, A.F.; Zandi, Y.; Shariati, M.; Wakil, K.; Safa, M.; Khorami, M.: Moment-rotation prediction of precast beam-to-column connections using extreme learning machine. Struct. Eng. Mech. (2019). https://doi.org/10.12989/sem.2019.70.5.639

    Article  Google Scholar 

  28. Mansouri, I.; Shariati, M.; Safa, M.; Ibrahim, Z.; Tahir, M.M.; Petkovic, D.: Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique. J. Intell. Manuf. (2019). https://doi.org/10.1007/s10845-017-1306-6

    Article  Google Scholar 

  29. Sari, P.A.; Suhatri, M.; Osman, N.; Mu’azu, M.A.; Dehghani, H.; Sedghi, Y.; Safa, M.; Hasanipanah, M.; Wakil, K.; Khorami, M.; Djuric, S.: An intelligent based-model role to simulate the factor of safe slope by support vector regression. Eng. Comput. (2019). https://doi.org/10.1007/s00366-018-0677-4

    Article  Google Scholar 

  30. Xie, Q.; Sinaei, H.; Shariati, M.; Khorami, M.; Mohamad, E.T.; Bui, D.T.: An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections. Steel Compos. Struct. (2019). https://doi.org/10.12989/scs.2019.30.5.433

    Article  Google Scholar 

  31. Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst. 13(2), 87–129 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Oltean, M.; Grosan, C.: A comparison of several linear genetic programming techniques. Complex Syst. 14(4), 285–314 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Mollahasani, A.; Alavi, A.H.; Gandomi, A.H.: Empirical modeling of plate load test moduli of soil via gene expression programming. Comput. Geotech. (2011). https://doi.org/10.1016/j.compgeo.2010.11.008

    Article  Google Scholar 

  34. Xu, C.; Zhang, X.; Haido, J.H.; Mehrabi, P.; Shariati, A.; Mohamad, E.T.; Nguyen, H.; Wakil, K.: Using genetic algorithms method for the paramount design of reinforced concrete structures. Struct. Eng. Mech. (2019). https://doi.org/10.12989/sem.2019.71.5.503

    Article  Google Scholar 

  35. Dibike, Y.B.; Velickov, S.; Solomatine, D.; Abbott, M.B.: Model induction with support vector machines: introduction and applications. J. Comput. Civ. Eng. 15, 208–216 (2001)

    Article  Google Scholar 

  36. Ahmad, A.S.; Hassan, M.Y.; Abdullah, M.P.; Rahman, H.A.; Hussin, F.; Abdullah, H.; Saidur, R.: A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energy Rev. (2014). https://doi.org/10.1016/j.rser.2014.01.069

    Article  Google Scholar 

  37. Nasien, D.; Yuhaniz, S.; Haron, H.: Statistical learning theory and support vector machines. In: Second International Conference on Computer Research and Development, IEEE (2010). http://doi.org/10.1109/ICCRD.2010.183

  38. Putri, E.E.; Rao, N.K.; Mannan, M.A.: Evaluation of modulus of elasticity and modulus of subgrade reaction of soils using CBR test. J. Civ. Eng. Res. (2012). https://doi.org/10.5923/j.jce.20120201.05

    Article  Google Scholar 

  39. Zumrawi, M.: Prediction of CBR from index properties of cohesive soils. In: Chang, S.-Y., AlBahar, S.K., Zhao, J. (eds.) Advances in Civil Engineering and Building Materials. CRC Press, Boca Raton (2012). https://doi.org/10.13140/2.1.4033.6326

    Chapter  Google Scholar 

  40. Alawi, M.; Rajab, M.: Prediction of California bearing ratio of sub-base layer using multiple linear regression models. Road Mater. Pavement Des. (2013). https://doi.org/10.1080/14680629.2012.757557

    Article  Google Scholar 

  41. Satyanarayana Reddy, C.N.V.; Pavani, K.: Mechanically stabilised soils-regression equation for CBR evaluation. In: Proceedings of Indian Geotechnical Conference, Chennai, India. Dec. 14–16, pp. 731–734 (2006)

  42. Vinod, P.; Reena, C.: Prediction of CBR value of lateritic soils using liquid limit and gradation characteristics data. Highw. Res. J. IRC 1(1), 89–98 (2008)

    Google Scholar 

  43. Venkatasubramanian, C.; Dhinakaran, G.: ANN model for predicting CBR from index properties of soils. Int. J. Civ. Struct. Eng. 2(2), 605–611 (2011)

    Google Scholar 

  44. Patel, M.A.; Patel, H.S.: Laboratory assessment to correlate strength parameter from physical properties of subgrade. In: Procedia Engineering (2013). Non-Circuit Branches of the 3rd Nirma University International Conference on Engineering http://doi.org/10.1016/j.proeng.2013.01.029

  45. Ramasubbarao, G.V.; Siva Sankar, G.: Predicting soaked CBR value of fine-grained soils using index and compaction characteristics. Jordan J. Civ. Eng. 7(3), 354–360 (2013)

    Google Scholar 

  46. Saxena, A.K.; Jain, P.K.; Jain, R.: Application of machine learning techniques to predict soaked CBR of remolded soils. Int. J. Eng. Res. Technol. (IJERT) 2(6), 3019–3024 (2013)

    Google Scholar 

  47. Talukdar, D.K.: A study of correlation between California Bearing Ratio (CBR) values with other properties of soil. Int. J. Emerg. Technol. Adv. Eng. 4(1), 559–562 (2014)

    Google Scholar 

  48. Prashanth Kumar, K.S.; Nanduri, R.K.; Kumar, N.D.: Validation of Predicted California bearing ratio values from different correlations. Am. J. Eng. Res. (AJER) 3(8), 344–352 (2014)

    Google Scholar 

  49. Rakaraddi, P.G.; Gomarsi, V.: Establishing relationship between CBR with different soil properties. Int. J. Res. Eng. Technol. 4(2), 182–188 (2015)

    Article  Google Scholar 

  50. Sabat, A.K.: Prediction of California bearing ratio of a stabilized expansive soil using artificial neural network and support vector machine. Electron. J. Geotech. Eng. 20(3), 981–991 (2015)

    Google Scholar 

  51. Araujo, W.; Ruiz, G.: Correlation equations of CBR with index properties of soil in the City of Piura. In: 14th LACCEI International Multi-Conference for Engineering, Education, and Technology: Engineering Innovations for Global Sustainability, San Jose, Costa Rica 20–22 July (2016). http://doi.org/10.18687/LACCEI2016.1.1.029

  52. Rehman, Z.U.; Khalid, U.; Farooq, K.; Mujtaba, H.: Prediction of CBR value from index properties of different soils. Tech. J. Univ. Eng. Technol. (UET) Taxila Pak. 22(II), 17–26 (2017)

    Google Scholar 

  53. Farias, I.G.; Araujo, W.; Ruiz, G.: Prediction of California bearing ratio from index properties of soils using parametric and non-parametric models. Geotech. Geol. Eng. (2018). https://doi.org/10.1007/s10706-018-0548-1

    Article  Google Scholar 

  54. Tenpe, A.; Patel, A.: Application of genetic expression programming and artificial neural network for prediction of CBR. Road Mater. Pavement Des. (2018). https://doi.org/10.1080/14680629.2018.1544924

    Article  Google Scholar 

  55. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  56. Koza, J.R.: Genetic Programming on the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  57. Simpson, A.R.; Priest, S.D.: The application of genetic algorithms to optimisation problems in geotechnics. Comput. Geotech. 15(1), 1–19 (1993)

    Article  Google Scholar 

  58. Pal, S.; Wathugala, G.W.; Kundu, S.: Calibration of a constitutive model using genetic algorithms. Comput. Geotech. (1996). https://doi.org/10.1016/S0266-352X(96)00006-7

    Article  Google Scholar 

  59. McCombie, P.; Wilkinson, P.: The use of the simple genetic algorithm in finding the critical factor of safety in slope stability analysis. Comput. Geotech. (2002). https://doi.org/10.1016/S0266-352X(02)00027-7

    Article  Google Scholar 

  60. Yang, C.; ThamFeng, X.T.; Wang, Y.J.; Lee, P.K.K.: Two-stepped evolutionary algorithm and its application to stability analysis of slopes. J. Comput. Civ. Eng. 18(2), 145 (2004). https://doi.org/10.1061/(ASCE)0887-3801(2004)

    Article  Google Scholar 

  61. Javadi, A.A.; Rezania, M.; Nezhad, M.M.: Evaluation of liquefaction induced lateral displacements using genetic programming. Comput. Geotech. (2006). https://doi.org/10.1016/j.compgeo.2006.05.001

    Article  Google Scholar 

  62. Johari, A.; Habibagahi, G.; Ghahramani, A.: Prediction of soil–water characteristic curve using genetic programming. J. Geotech. Geoenviron. Eng. 132(1), 661 (2006). https://doi.org/10.1061/(ASCE)1090-0241(2006)

    Article  Google Scholar 

  63. Alavi, A.H.; Heshmati, A.A.R.; Gandomi, A.H.; Askarinejad, A.; Mirjalili, M.: Utilisation of computational intelligence techniques for stabilised soil. In: Engineering Computational Technology, Civil-Comp Press, Edinburgh (2008)

  64. Alavi, A.H.; Gandomi, A.H.: Energy-based numerical models for assessment of soil liquefaction. Geosci. Front. (2012). https://doi.org/10.1016/j.gsf.2011.12.008

    Article  Google Scholar 

  65. Cevik, A.; Cabalar, A.F.: Modelling damping ratio and shear modulus of sand–mica mixtures using genetic programming. Expert Syst. Appl. (2009). https://doi.org/10.1016/j.eswa.2008.09.010

    Article  Google Scholar 

  66. Cabalar, A.F.; Cevik, A.: Genetic programming-based attenuation relationship: an application of recent earthquakes in turkey. Comput. Geosci. (2009). https://doi.org/10.1016/j.cageo.2008.10.015

    Article  Google Scholar 

  67. Baykasoglu, A.; Gullu, H.; Canakci, H.; Ozbakir, L.: Prediction of compressive and tensile strength of limestone via genetic programming. Expert Syst. Appl. (2008). https://doi.org/10.1016/j.eswa.2007.06.006

    Article  Google Scholar 

  68. Onen, F.: Prediction of scour at a side-weir with GEP, ANN and regression models. Arabian Journal for Science and Engineering (2013). https://doi.org/10.1007/s13369-014-1244-y

    Article  Google Scholar 

  69. Gandomi, A.H.; Alavi, A.H.; Mirzahosseini, M.R.; Nejad, F.M.: Nonlinear genetic-based for prediction of flow number of asphalt mixtures. J. Mater. Civ. Eng. (2011). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000154

    Article  Google Scholar 

  70. Teodorescu, L.; Sherwood, D.: High energy physics event selection with gene expression programming. Comput. Phys. Commun. (2008). https://doi.org/10.1016/j.cpc.2007.10.003

    Article  Google Scholar 

  71. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  Google Scholar 

  72. Elbisy, M.S.: Support vector machine and regression analysis to predict the field hydraulic conductivity of sandy soil. KSCE J. Civ. Eng. (2015). https://doi.org/10.1007/s12205-015-0210-x

    Article  Google Scholar 

  73. Cortes, C.; Vapnik, V.: Support vector machine. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  74. Vapnik, V.: Statistical learning theory. Weley, New York (1998)

    MATH  Google Scholar 

  75. Li, X.Z.; Kong, J.M.: Application of GA–SVM method with parameter optimization for landslide development prediction. Nat. Hazards Earth Syst. Sci. (2014). https://doi.org/10.5194/nhess-14-525-2014

    Article  Google Scholar 

  76. Cawley, G.C.; Talbot, N.L.C.: Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Netw. (2004). https://doi.org/10.1016/j.neunet.2004.07.002

    Article  MATH  Google Scholar 

  77. Samui, P.: Slope stability analysis: a support vector machine approach. Environ. Geol. 56, 255–267 (2008)

    Article  Google Scholar 

  78. Oltean, M.; Dumitrescu, D.: Multi expression programming. Technical Report (2002)

  79. Erzin, Y.; Turkoz, D.: Use of neural networks for the prediction of the CBR value of some Aegean sands. Neural Comput. Appl. (2016). https://doi.org/10.1007/s00521-015-1943-7

    Article  Google Scholar 

  80. Goyal, P.; Chowdhary, S.; Agnihotri, K.: Modelling of angle of shearing resistance using support vector machines. Int. J. Eng. Res. Technol. IJERT 3(3), 2478–2481 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the City and Industrial Development Corporation of Maharashtra Limited (CIDCO), Mumbai (MH State), India to provide experimental data and their kind support to complete the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwini R. Tenpe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenpe, A.R., Patel, A. Utilization of Support Vector Models and Gene Expression Programming for Soil Strength Modeling. Arab J Sci Eng 45, 4301–4319 (2020). https://doi.org/10.1007/s13369-020-04441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04441-6

Keywords

Navigation