Skip to main content
Log in

Feasibility of Using CeO2/Water Dielectrical Nanofluid in Electrical Discharge Machining (EDM)

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Dielectrical fluids have substantial impact on the machining performance of electrical discharge machining (EDM). Apposite selection of these fluids enhances the material removal rate (MRR) and microhardness while abating the tool wear rate (TWR) and surface roughness. In the present research, feasibility of using cerium oxide/water (CeO2/water) dielectrical nanofluid in EDM is examined experimentally. A portable EDM has been employed for experimental test, whereby mild steel workpiece and pure copper tool electrode were used. Powder concentration of CeO2/water was varied from 0.0 to 2.0 g/L, while the current, set distance, depth of cut and delay time were kept constant at 0.8 A, 2.0 mm, 0.5 mm and 0.5 s, respectively. Results show that at 0.6 g/L concentration, MRR and machining efficiency is enhanced by 20.04% and 69.68%, while TWR is reduced by 29.25%. Minimum surface roughness is obtained at the concentration of 1.0 g/L with Ra value of 0.22 µm, whereas with distilled water dielectrical fluid this value is 1.06 µm. Scanning electron microscopy images confirm that the best surface quality with the least pores and minute microcracks is obtained at 0.6 g/L concentration. Use of CeO2/water dielectrical nanofluid also improved material hardness significantly. While the microhardness number with distilled water is 1.06 HV, it upraised as high as 1.94 HV at powder concentration of 0.6 g/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Liqing, L.; Yingjie, S.: Study of dry EDM with oxygen-mixed and cryogenic cooling approaches. Procedia CIRP 6, 344–350 (2013)

    Google Scholar 

  2. Wang, Y.K.; et al.: Micro EDM deposition in air by single discharge thermo simulation. Trans. Nonferr. Met. Soc. China 21, s450–s455 (2011)

    Google Scholar 

  3. Zahiruddin, M.; Kunieda, M.: Comparison of energy and removal efficiencies between micro and macro EDM. CIRP Ann. Manuf. Technol. 61(1), 187–190 (2012)

    Google Scholar 

  4. Sindhu, M.K.; Nandi, D.; Basak, I.: Electric discharge phenomenon in dielectric and electrolyte medium. Adv. Manuf. 6(4), 457–464 (2018)

    Google Scholar 

  5. Jahan, M.; Wong, Y.; Rahman, M.: A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator. J. Mater. Process. Technol. 209(4), 1706–1716 (2009)

    Google Scholar 

  6. Ho, K.; Newman, S.: State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf 43(13), 1287–1300 (2003)

    Google Scholar 

  7. Lan, T.S.; Yeh, L.J.: Optimum material removal control with tool life determination for machining operation. J. Mater. Process. Manuf. Sci. 10(4), 219–228 (2002)

    Google Scholar 

  8. Sidhu, S.S.; Batish, A.; Kumar, S.: Study of surface properties in particulate-reinforced metal matrix composites (MMCs) using powder-mixed electrical discharge machining (EDM). Mater. Manuf. Process. 29(1), 46–52 (2014)

    Google Scholar 

  9. Vishwakarma, M.; Parashar, V.; Khare, V.: Advancement in electric discharge machining on metal matrix composite materials in recent: a review. Int. J. Sci. Res. Publ. 2(3), 1–8 (2012)

    Google Scholar 

  10. Panda, D.K.; Bhoi, R.K.: Study of crater under single spark in electro discharge machining of very large solid by using transient three-dimensional thermal model. J. Mater. Process. Manuf. Sci. 10, 199–217 (2002)

    Google Scholar 

  11. Grosse, A.: The temperature range of liquid metals and an estimate of their critical constants. J. Inorg. Nucl. Chem. 22(1–2), 23–31 (1961)

    Google Scholar 

  12. Kibria, G.; et al.: Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti–6Al–4 V alloy. Int. J. Adv. Manuf. Technol. 48(5–8), 557–570 (2010)

    Google Scholar 

  13. Chen, S.B.; Yan,; Huang, F.: Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti–6A1–4 V. J. Mater. Process. Technol. 87(1–3), 107–111 (1999)

    Google Scholar 

  14. Singh, S.; Bhardwaj, : A Review to EDM by using water and powder-mixed dielectric fluid. J. Miner. Mater. Charact. Eng. 10(02), 199 (2011)

    Google Scholar 

  15. Prihandana, G.S.; et al.: Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM processes—Taguchi approach. Int. J. Mach. Tool Manuf. 49(12–13), 1035–1041 (2009)

    Google Scholar 

  16. Kansal, H.S.; Singh,; Kumar, P.: Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J. Mater. Process. Technol. 169(3), 427–436 (2005)

    Google Scholar 

  17. Korayem, M.; Zakeri, M.: Dynamic modeling of manipulation of micro/nanoparticles on rough surfaces. Appl. Surf. Sci. 257(15), 6503–6513 (2011)

    Google Scholar 

  18. Rao, P.S.; Ramji, K.; Satyanarayana, B.: Experimental investigation and optimization of wire EDM parameters for surface roughness, MRR and white layer in machining of aluminium alloy. Procedia Mater. Sci. 5, 2197–2206 (2014)

    Google Scholar 

  19. Kumar, M.S.; Datta, S; Kumar, R.: Electro-discharge machining performance of Ti–6Al–4V alloy: studies on parametric effect and phenomenon of electrode wear. Arab. J. Sci. Eng. 44(2), 1553–1568 (2019)

    Google Scholar 

  20. Liu, J.; et al.: A study of the materials removal mechanism of grinding-aided electrochemical discharge machining of metal matrix composites. Adv. Compos. Lett. 27(5), 204–211 (2018)

    Google Scholar 

  21. Kumar, A.T.; Soota, T.; Kumar, J.: Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology. J. Ind. Eng. Int. 14(4), 821–829 (2018)

    Google Scholar 

  22. Bhattacharya, A.; et al.: Optimal parameter settings for rough and finish machining of die steels in powder-mixed EDM. Int. J. Adv. Manuf. Technol. 61(5–8), 537–548 (2012)

    Google Scholar 

  23. Shard, A.; et al.: Effect of B 4 C abrasive mixed into dielectric fluid on electrical discharge machining. J. Braz. Soc. Mech. Sci. Eng. 40(12), 554 (2018)

    Google Scholar 

  24. Korayem, M.; Omidi, E.: Robust controlled manipulation of nanoparticles using atomic force microscope. Micro Nano Lett. 7(9), 927–931 (2012)

    Google Scholar 

  25. Hossain, M.M.; et al.: Performance enhancement in powder mixed electrical discharge machining (PMEDM) using PEDM and multi-component metal oxide (Ni0.3Co0.1Mn0.6O) mixed dielectrical fluid. Proc. Mech. Eng. Res. Day 2018, 285–286 (2018)

    Google Scholar 

  26. Lee, C.S.; et al.: A method of hole pass-through evaluation for EDM drilling. J. Korean Inst. Ind. Eng. 38(3), 220–226 (2012)

    Google Scholar 

  27. Razak, M.A.; Abdul-Rani,; Nanimina, A.: Improving EDM efficiency with silicon carbide powder-mixed dielectric fluid. Int. J. Mater. Mech. Manuf. 3(1), 40–43 (2015)

    Google Scholar 

  28. Kurapati, V.B.; Kommineni, R.: Effect of wear parameters on dry sliding behavior of fly ash/SiC particles reinforced AA 2024 hybrid composites. Mater. Res. Express 4(9), 096512 (2017)

    Google Scholar 

  29. Assarzadeh, S.; Ghoreishi, M.: A dual response surface-desirability approach to process modeling and optimization of Al2O3 powder-mixed electrical discharge machining (PMEDM) parameters. Int. J. Adv. Manuf. Technol. 64(9–12), 1459–1477 (2013)

    Google Scholar 

  30. Syed, K.H.; Palaniyandi, K.: Performance of electrical discharge machining using aluminium powder suspended distilled water. Turk. J. Eng. Environ. Sci. 36(3), 195–207 (2012)

    Google Scholar 

  31. Abdul-Rani, A.; et al.: Machined surface quality in nano aluminum mixed electrical discharge machining. Procedia Manuf. 7, 510–517 (2017)

    Google Scholar 

  32. Ojha, K.R.; Garg,; Singh, K.: Experimental investigation and modeling of PMEDM process with chromium powder suspended dielectric. Int. J. Appl. Sci. Eng. 9(2), 65–81 (2011)

    Google Scholar 

  33. Mohal, S.; Kumar, H.: Parametric optimization of multiwalled carbon nanotube-assisted electric discharge machining of Al-10% SiCp metal matrix composite by response surface methodology. Mater. Manuf. Process. 32(3), 263–273 (2017)

    Google Scholar 

  34. Rao, T.B.: Optimizing machining parameters of wire-EDM process to cut Al7075/SiCp composites using an integrated statistical approach. Adv. Manuf. 4(3), 202–216 (2016)

    Google Scholar 

  35. Rao, T.B.; Krishna, A.G.: Simultaneous optimization of multiple performance characteristics in WEDM for machining ZC63/SiCp MMC. Adv. Manuf. 1(3), 265–275 (2013)

    MathSciNet  Google Scholar 

  36. Baseri, H.; Sadeghian, S.: Effects of nanopowder TiO2-mixed dielectric and rotary tool on EDM. Int. J. Adv. Manuf. Technol. 83(1–4), 519–528 (2016)

    Google Scholar 

  37. Nguyen, H.P.; Pham, V.D.; Ngo, N.V.: Application of TOPSIS to Taguchi method for multi-characteristic optimization of electrical discharge machining with titanium powder mixed into dielectric fluid. Int. J. Adv. Manuf. Technol. 98(5–8), 1179–1198 (2018)

    Google Scholar 

  38. Banh, T.L.; et al.: Characteristics optimization of powder mixed electric discharge machining using titanium powder for die steel materials. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 232(3), 281–298 (2018)

    Google Scholar 

  39. Sahu, R.; et al.: An innovative approach for generation of Aluminium nanoparticles using micro electrical discharge machining. Procedia Mater. Sci. 5, 1205–1213 (2014)

    Google Scholar 

  40. Loya, A.; Stair, J.L.; Ren, G.: Simulation and experimental study of rheological properties of CeO2–water nanofluid. Int. Nano Lett. 5(1), 1–7 (2015). https://doi.org/10.1007/s40089-014-0129-0

    Article  Google Scholar 

  41. Tiwari, A.K.; Ghosh, P.; Sarkar, J.: Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger. Appl. Therm. Eng. 57(1–2), 24–32 (2013)

    Google Scholar 

  42. Loya, A.; Stair, J.L.; Ren, G.: The study of simulating metaloxide nanoparticles in aqueous fluid. Int. J. Eng. Res. Technol. 3(4), 1954–1960 (2014)

    Google Scholar 

  43. Rico, C.M.; et al.: Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ. Sci. Technol. 47(24), 14110–14118 (2013)

    Google Scholar 

  44. Ramírez-Olvera, S.M.; et al.: Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice. PLoS ONE 13(3), 0194691 (2018)

    Google Scholar 

  45. Zamiri, R.; et al.: Dielectrical properties of CeO2 nanoparticles at different temperatures. PLoS ONE 10(4), 0122989 (2015)

    Google Scholar 

  46. Helmenstine AM: Copper facts: chemical and physical properties (2019). https://www.thoughtco.com/copper-facts-chemical-and-physical-properties-606521. Accessed 20 Feb 2019

  47. Austen Knapman: Properties of mild steel (2013). https://www.austenknapman.co.uk/blog/faqs/faq-what-is-the-melting-point-of-mild-steel/. Accessed 20 Feb 2019

  48. EASCHEM: High purity cerium oxide powder (2019). https://www.easchem.com/1306-38-3_High+Purity+Cerium+Oxide+Powder.html?gclid=CjwKCAiA9JbwBRAAEiwAnWa4Q9LcDYAyyTA2JgZH8S5YlIeej9JuFBCDOaawTZx1886Pfb7-ydPPdxoCQsgQAvD_BwE

  49. Modi, M.; Agarwal, G.: Design, development and experimental investigation of electro-discharge diamond surface grinding of Ti–6Al–4 V. In: Liu, X.; Jiang, Z.; Han, J. (eds.) Advanced Materials Research, vol. 418–420, pp. 1478–1481 (2012)

  50. Purohit, R.; et al.: Optimization of electric discharge machining of M2 tool steel using grey relational analysis. Mater. Today Proc. 2(4–5), 3378–3387 (2015)

    Google Scholar 

  51. Tzeng, Y.F.; Lee, C.Y.: Effects of powder characteristics on electrodischarge machining efficiency. Int. J. Adv. Manuf. Technol. 17(8), 586–592 (2001)

    Google Scholar 

  52. Wang, X.; Feng, C.: Development of empirical models for surface roughness prediction in finish turning. Int. J. Adv. Manuf. Technol. 20(5), 348–356 (2002)

    Google Scholar 

Download references

Acknowledgements

This research was funded by University of Malaya under UMRG Programme, Grant Number RP039A-15AET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Sayuti Bin Ab Karim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.M., Karim, M.S.B.A., Hoong, W.Y. et al. Feasibility of Using CeO2/Water Dielectrical Nanofluid in Electrical Discharge Machining (EDM). Arab J Sci Eng 45, 5435–5445 (2020). https://doi.org/10.1007/s13369-020-04404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04404-x

Keywords

Navigation