Skip to main content
Log in

Flow analysis by Cattaneo–Christov heat flux in the presence of Thomson and Troian slip condition

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

This communication considers entropy minimization in stagnation point flow of a hybrid nanofluid past a nonlinear permeable stretching sheet with Thomson and Troian boundary condition. Due to the porous medium, the Darcy–Forchheimer relation is added. The nonlinear thermal radiation, heat generation, and viscous dissipation by using Cattaneo–Christov heat flux model are explained. Further the influence of variable viscosity, activation energy, and variable mass diffusivity is taken into account. For first time, hybrid nanofluid consisting of carbon nanotubes with Thomson and Troian boundary conditions and induced MHD has been implemented and has not yet been studied. The finite difference method, i.e., bvp4c from Matlab, is utilized to solve the transformed ordinary differential equations (ODEs). This method has good certainty to solve this problem, compared to previous works. Comparison of simple nanofluid and hybrid nanofluid is graphically illustrated. It is noticed that the solid volume fraction decreases the velocity profile and enhances the temperature distribution. Further, compared to simple nanofluid, hybrid nanofluid has greater thermal conductivity and better heat transfer performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

\(\hat{u}\) :

Along the x-axis velocity component

\(\hat{v}\) :

Along the y-axis velocity component

\(Q(x)\) :

Volumetric rate of heat source

\(K^{**}\) :

Permeability of porous medium

\(k^{*}\) :

Coefficient of mean absorption

\(F^{**}\) :

Non-uniform inertia coefficient

\(k_{r}\) :

Reaction rate constant

\(u_{e} (x)\) :

Free stream velocity of the fluid

\(E_{a}\) :

Activation energy

\(D_{{{\text{hnf}}}}\) :

Mass diffusivity

\(\Pr\) :

Prandtl number

\(k({8}{\text{.61}} \times {10}^{ - 5} {\text{eV/K}})\) :

Boltzmann constant

\(L\) :

Diffusive constant parameter

\(E\) :

Non-dimensional activation energy

\(S_{c}\) :

Schmidt number

\(C_{f}\) :

Surface drag force

\({\text{Nu}}_{x}\) :

Nusselt number

\({\text{Br}}\) :

Brinkman number

\(F_{r}\) :

Inertia coefficient

\(E_{c}\) :

Eckert number

\(R_{d}\) :

Radiation parameter

\(R_{c}\) :

Dimensionless reaction rate

\(\hat{H}_{e}\) :

Magnetic field at free stream

\(M\) :

Magnetic parameter

\(m\) :

Power law parameter

\(\rho_{{{\text{hnf}}}}\) :

Hybrid nanofluid density

\(\sigma^{*}\) :

Stefan-Boltzmann constant

\(\mu_{{{\text{hnf}}}} (\hat{T})\) :

Hybrid nanofluid viscosity

\(\tau_{w}\) :

Shear stress

\(\alpha_{{{\text{hnf}}}}\) :

Hybrid nanofluid thermal diffusivity

\(\lambda\) :

Reciprocal magnetic Prandtl number

\((\rho C_{p} )_{{{\text{hnf}}}}\) :

Hybrid nanofluid heat capacity

\(\alpha_{1}\) :

Temperature difference

\(\mu_{\infty }\) :

Viscosity of fluid

\(\rho_{f}\) :

Density of fluid

\((\rho C_{p} )_{f}\) :

Heat capacity of fluid

\(D_{c}\) :

Dimensionless heat generation parameter

\(\mu_{0}\) :

Magnetic permeability

\(\alpha_{2}\) :

Concentration difference

\(\theta_{r}\) :

Variable viscosity parameter

\(\varepsilon_{1}\) :

Mass diffusivity parameter

\(\mu_{e}\) :

Magnetic diffusivity

\(\varepsilon\) :

Velocity ratio parameter

\(\gamma\) :

Parameter of thermal relaxation time

\(\xi\) :

Critical shear rate

\(\gamma_{1}\) :

Slip velocity parameter

\(\xi^{*}\) :

Critical shear rate (reciprocal)

\(\gamma^{*}\) :

Navier’s slip length

References

  • Abbas Z, Sheikh M, Hasnain J, Ayaz H, Nadeem A (2019) Numerical aspects of Thomson and Troian boundary condition in Tiwari-Das nanofluid model with homogeneous-heterogeneous reactions. Phys Scr 94:11

    Article  Google Scholar 

  • Ahmad S, Nadeem S, Muhammad N (2019) Boundary layer flow over a curved surface imbedded in porous medium. Commun Theor Phys 71:344

    Article  CAS  Google Scholar 

  • Ahmed Z, Nadeem S, Saleem S, Ellahi R (2019) Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface. Int J Numer Methods Heat Fluid Flow 11:583–594

    CAS  Google Scholar 

  • Akbar NS, Raza M, Ellahi R (2016) Impulsion of induced magnetic field for Brownian motion of nanoparticles in peristalsis. Appl Nanosci 6:359–370

    Article  CAS  Google Scholar 

  • Alamri SZ, Ellahi R, Shehzad N, Zeeshan A (2019) Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing. J Mol Liq 273:292–304

    Article  CAS  Google Scholar 

  • Bakar SA, Arifin NM, Ali FM, Nazar R (2014) Forced convection boundary layer slip flow over a permeable plate in a Darcy-Forchheimer porous medium. Far East J Appl Math 86:245

    Google Scholar 

  • Bejan A (1980) Second law analysis in heat transfer. Energy 5:720–732

    Article  Google Scholar 

  • Besthapu P, Haq RU, Bandari S, Al-Mdallal QM (2019) Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface. Neural Comput Appl 31:207–217

    Article  Google Scholar 

  • Chen LF, Cheng M, Yang DJ, Yang L (2014) Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. Appl Mech Mater 548:118–123 (Trans Tech Publications).

  • Ellahi R, Sait SM, Shehzad N, Mobin N (2019a) Numerical simulation and mathematical modeling of electro-osmotic Couette-Poiseuille flow of MHD power-law nanofluid with entropy generation. Symmetry 11:1038

    Article  CAS  Google Scholar 

  • Ellahi R, Hassan M, Zeeshan A, Khan AA (2016) The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection. Appl Nanosci 6:641–651

    Article  CAS  Google Scholar 

  • Ellahi R, Alamri SZ, Basit A, Majeed A (2018a) Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci 12:476–482

    Article  Google Scholar 

  • Ellahi R, Zeeshan A, Shehzad N, Alamri SZ (2018b) Structural impact of Kerosene-Al2O3 nanoliquid on MHD Poiseuille flow with variable thermal conductivity: application of cooling process.". J Mol Liq 264:607–615

    Article  CAS  Google Scholar 

  • Ellahi R, Hussain F, Ishtiaq F, Hussain A (2019b) Peristaltic transport of Jeffrey fluid in a rectangular duct through a porous medium under the effect of partial slip: An application to upgrade industrial sieves/filters. Pramana 93:34

    Article  Google Scholar 

  • Farooq M, Ahmad S, Javed M, Anjum A (2018) Chemically reactive species in squeezed flow through modified Fourier’s and Fick’s laws. Eur Phys J Plus 133:63

    Article  Google Scholar 

  • Forchheimer P (1901) Wasserbewegung durch boden. Z Ver Deutsch Ing 45:1782–1788

    Google Scholar 

  • Gireesha BJ, Mahanthesh B, Manjunatha PT, Gorla RSR (2015) Numerical solution for hydromagnetic boundary layer flow and heat transfer past a stretching surface embedded in non-Darcy porous medium with fluid-particle suspension. J Niger Math Soc 34:267–285

    Article  Google Scholar 

  • Gul T, Islam S, Shah RA, Khan I, Khalid A, Shafie S (2014) Heat transfer analysis of MHD thin film flow of an unsteady second grade fluid past a vertical oscillating belt. PLoS ONE 9:e103843

    Article  Google Scholar 

  • Hassan M, Marin M, Ellahi R, Alamri SZ (2018a) Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids. Heat Transfer Res 49:1837–1848

    Article  Google Scholar 

  • Hassan M, Marin M, Alsharif A, Ellahi R (2018b) Convective heat transfer flow of nanofluid in a porous medium over wavy surface. Phys Lett A 382:2749–2753

    Article  CAS  Google Scholar 

  • Hussien AA, Abdullah MZ, Yusop NM, Al-Kouz ME, Mehrali M (2019) Heat transfer and entropy generation abilities of MWCNTs/GNPs hybrid nanofluids in microtubes. Entropy 21:480

    Article  CAS  Google Scholar 

  • Khan M, Hafeez A (2017) A review on slip-flow and heat transfer performance of nanofluids from a permeable shrinking surface with thermal radiation: dual solutions. Chem Eng Sci 173:1–11

    Article  CAS  Google Scholar 

  • Khan NS, Zuhra S, Shah Q (2019) Entropy generation in two phase model for simulating flow and heat transfer of carbon nanotubes between rotating stretchable disks with cubic autocatalysis chemical reaction. Appl Nanosci 9:1–26

    Article  Google Scholar 

  • Lu D, Ramzan M, Ahmad S, Shafee A, Suleman M (2018) Impact of nonlinear thermal radiation and entropy optimization coatings with hybrid nanoliquid flow past a curved stretched surface. Coatings 8:430

    Article  Google Scholar 

  • Mabood F, Khan WA, Ismail AM (2015) MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: a numerical study. J Magn Magn Mater 374:569–576

    Article  CAS  Google Scholar 

  • Madhesh D, Parameshwaran R, Kalaiselvam S (2014) Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Exp Thermal Fluid Sci 52:104–115

    Article  CAS  Google Scholar 

  • Mah WH, Hung YM, Guo N (2012) Entropy generation of viscous dissipative nanofluid flow in microchannels. Int J Heat Mass Transf 55:4169–4182

    Article  CAS  Google Scholar 

  • Mahapatra TR, Gupta AS (2001) Magnetohydrodynamic stagnation-point flow towards a stretching sheet. Acta Mech 152:191–196

    Article  Google Scholar 

  • Mahdy A, Chamkha AJ (2010) Chemical reaction and viscous dissipation effects on Darcy–Forchheimer mixed convection in a fluid saturated porous media. Int J Numer Meth Heat Fluid Flow 20:924–940

    Article  CAS  Google Scholar 

  • Majeed A, Zeeshan A, Alamri SZ, Ellahi E (2018) Heat transfer analysis in ferromagnetic viscoelastic fluid flow over a stretching sheet with suction. Neural Comput Appl 30:1947–1955

    Article  Google Scholar 

  • Nadeem S, Ahmad S, Muhammad N (2018) Computational study of Falkner–Skan problem for a static and moving wedge. Sens Actuators B Chem 263:69–76

    Article  CAS  Google Scholar 

  • Nadeem S, Hayat T, Khan AU (2019) Numerical study of 3D rotating hybrid SWCNT–MWCNT flow over a convectively heated stretching surface with heat generation/absorption. Phys Scr 94:075202

    Article  CAS  Google Scholar 

  • Pal D, Mondal H (2012) Hydromagnetic convective diffusion of species in Darcy–Forchheimer porous medium with non-uniform heat source/sink and variable viscosity. Int Commun Heat Mass Transfer 39:913–917

    Article  Google Scholar 

  • Sayyed SR, Singh BB, Bano N (2018) Analytical solution of MHD slip flow past a constant wedge within a porous medium using DTM-Padé. Appl Math Comput 321(2018):472–482

    Google Scholar 

  • Sheikholeslami M, Hatami M, Ganji D (2014) Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field. J Mol Liq 190:112–120

    Article  CAS  Google Scholar 

  • Sundar LS, Singh MK, Sousa AC (2014) Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transfer 52:73–83

    Article  CAS  Google Scholar 

  • Tc C (1994) Stagnation-point flow towards a stretching plate. J Phys Soc Jpn 63:2443–2444

    Article  Google Scholar 

  • Wang CY (2002) Flow due to a stretching boundary with partial slip—an exact solution of the Navier–Stokes equations. Chem Eng Sci 57:3745–3747

    Article  CAS  Google Scholar 

  • White FM (2015) Fluid mechanics

  • Zadkhast M, Toghraie D, Karimipour A (2017) Developing a new correlation to estimate the thermal conductivity of MWCNT–CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim 129:859–867

    Article  CAS  Google Scholar 

  • Zeeshan A, Ellahi R, Mabood F, Hussain F (2019) Numerical study on bi-phase coupled stress fluid in the presence of Hafnium and metallic nanoparticles over an inclined plane. Int J Numer Methods Heat Fluid Flow 29:2854–2869

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohail Nadeem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Nadeem, S. Flow analysis by Cattaneo–Christov heat flux in the presence of Thomson and Troian slip condition. Appl Nanosci 10, 4673–4687 (2020). https://doi.org/10.1007/s13204-020-01267-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01267-4

Keywords

Navigation