Skip to main content
Log in

Finite-Element-Based Monte Carlo Simulation for Sandwich Panel-Retrofitted Unreinforced Masonry Walls Subject to Air Blast

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the behavior of three types of masonry walls is assessed subject to blast load as an out-of-plane impulse origin, and they are strengthened by the sandwich panel. The values of displacement and von Mises stress caused by blast loads are calculated using finite-element simulation. The modeled masonry walls are constructed using brick, grouted concrete masonry unit and ungrouted concrete masonry unit. Blast load is modeled by means of the CONWEP (conventional weapon) tool. A reliability analysis is conducted to evaluate outputs statistically and to calculate failure probabilities using Monte Carlo method. Plasticity properties of masonry and steel materials are simulated using concrete damage plasticity and Johnson–Cook (JK) models, respectively. Blast load is applied in three different levels of mild, moderate and severe. Results show that sandwich panel strengthening can efficiently reduce the stress and displacement values for all masonry wall types. Probabilities of failure in strengthened masonry walls are significantly decreased. Moreover, in non-strengthened cases, grouted blockwork wall has a lower stress and displacement comparing to the other masonry walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Varma, R.; Tomar, C.; Parkash, S.; Sethi, V.: Damage to brick masonry panel walls under high explosive detonations. Asme-Publications-Pvp 351, 207–216 (1996)

    Google Scholar 

  2. Zehtab, B.; Mirdamadi, H.; Asadi, A.; Rafeeyan, M.: Experimental study on damage identification in GFRP-strengthened RC beams using novel cubic energy-based damage index. Adv. Struct. Eng. 18(10), 1639–1652 (2015)

    Article  Google Scholar 

  3. Baylot, J.T.; Bullock, B.; Slawson, T.R.; Woodson, S.C.: Blast response of lightly attached concrete masonry unit walls. J. Struct. Eng. 131(8), 1186–1193 (2005)

    Article  Google Scholar 

  4. Davidson, J.S.; Porter, J.R.; Dinan, R.J.; Hammons, M.I.; Connell, J.D.: Explosive testing of polymer retrofit masonry walls. J. Perform. Constr. Facil. 18(2), 100–106 (2004)

    Article  Google Scholar 

  5. Wesevich, J., Oswald, C.: Empirical based concrete masonry pressure-impulse diagrams for varying degrees of damage. In: Structures Congress 2005: Metropolis and Beyond 2005, pp. 1–12

  6. Maji, A.K.; Brown, J.P.; Urgessa, G.S.: Full-scale testing and analysis for blast-resistant design. J. Aerosp. Eng. 21(4), 217–225 (2008)

    Article  Google Scholar 

  7. Urgessa, G.S.: Finite element analysis of composite hardened walls subjected to blast loads. J. Eng. Appl. Sci. 2(4), 804–811 (2009)

    Article  Google Scholar 

  8. Urgessa, G.S.; Maji, A.K.: Dynamic response of retrofitted masonry walls for blast loading. J. Eng. Mech. 136(7), 858–864 (2009)

    Article  Google Scholar 

  9. Lourenço, P.J.B.B.: Computational strategies for masonry structures. Ph.D. Dissertation, Delft University of Technology, Netherlands (1997)

  10. Wei, X.; Hao, H.: Numerical derivation of homogenized dynamic masonry material properties with strain rate effects. Int. J. Impact Eng. 36(3), 522–536 (2009)

    Article  Google Scholar 

  11. Ma, G.; Hao, H.; Lu, Y.: Homogenization of masonry using numerical simulations. J. Eng. Mech. 127(5), 421–431 (2001)

    Article  Google Scholar 

  12. Wu, C.; Hao, H.: Derivation of 3D masonry properties using numerical homogenization technique. Int. J. Numer. Methods Eng. 66(11), 1717–1737 (2006)

    Article  Google Scholar 

  13. Zucchini, A.; Lourenço, P.B.: A micro-mechanical homogenisation model for masonry: application to shear walls. Int. J. Solids Struct. 46(3), 871–886 (2009)

    Article  Google Scholar 

  14. Hallquist, J.O.: LS-DYNA theory manual. Livermore Softw. Technol. Corp. 3, 25–31 (2006)

    Google Scholar 

  15. Burnett, S.; Gilbert, M.; Molyneaux, T.; Beattie, G.; Hobbs, B.: The performance of unreinforced masonry walls subjected to low-velocity impacts: finite element analysis. Int. J. Impact Eng. 34(8), 1433–1450 (2007)

    Article  Google Scholar 

  16. Dennis, S.T.; Baylot, J.T.; Woodson, S.C.: Response of 1/4-scale concrete masonry unit (CMU) walls to blast. J. Eng. Mech. 128(2), 134–142 (2002)

    Article  Google Scholar 

  17. Wei, X.; Stewart, M.G.: Model validation and parametric study on the blast response of unreinforced brick masonry walls. Int. J. Impact Eng. 37(11), 1150–1159 (2010)

    Article  Google Scholar 

  18. Hibbitt, Karlsson: Sorensen: ABAQUS/Standard User’s Manual, vol. 1. Karlsson & Sorensen, Hibbitt (2001)

    Google Scholar 

  19. Bolhassani, M.; Hamid, A.A.; Lau, A.C.; Moon, F.: Simplified micro modeling of partially grouted masonry assemblages. Constr. Build. Mater. 83, 159–173 (2015)

    Article  Google Scholar 

  20. Zok, F.W.; Waltner, S.A.; Wei, Z.; Rathbun, H.J.; McMeeking, R.M.; Evans, A.G.: A protocol for characterizing the structural performance of metallic sandwich panels: application to pyramidal truss cores. Int. J. Solids Struct. 41(22), 6249–6271 (2004)

    Article  Google Scholar 

  21. Ueda, Y., Morinaka, M., Chujo, M., Torigoe, T., Iida, M., Tamada, K.: Honeycomb sandwich panel. In: Google Patents (2004)

  22. Wang, E.; Gardner, N.; Shukla, A.: The blast resistance of sandwich composites with stepwise graded cores. Int. J. Solids Struct. 46(18), 3492–3502 (2009)

    Article  Google Scholar 

  23. Dharmasena, K.P.; Wadley, H.N.; Xue, Z.; Hutchinson, J.W.: Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. Int. J. Impact Eng. 35(9), 1063–1074 (2008)

    Article  Google Scholar 

  24. Tilbrook, M.; Deshpande, V.; Fleck, N.: Underwater blast loading of sandwich beams: regimes of behaviour. Int. J. Solids Struct. 46(17), 3209–3221 (2009)

    Article  Google Scholar 

  25. Shen, J.; Lu, G.; Wang, Z.; Zhao, L.: Experiments on curved sandwich panels under blast loading. Int. J. Impact Eng. 37(9), 960–970 (2010)

    Article  Google Scholar 

  26. Hua, Y.; Akula, P.K.; Gu, L.: Experimental and numerical investigation of carbon fiber sandwich panels subjected to blast loading. Compos. B Eng. 56, 456–463 (2014)

    Article  Google Scholar 

  27. Campbell-Allen, D.; Thorne, C.: The thermal conductivity of concrete. Mag. Concr. Res. 15(43), 39–48 (1963)

    Article  Google Scholar 

  28. Fiorato, A.E., Cruz, C.: Thermal performance of masonry walls. In: Proceedings of 5th International Brick Masonry Conference (VIBMaC) held in Washington, DC, 5–10 Oct. 1979. Edited by J. A. Wintz and A. H. Yorkdale. McLean, Virginia, p. 664 (1982)

  29. Hillerborg, A.: Fracture mechanics concepts applied to moment capacity and rotational capacity of reinforced concrete beams. Eng. Fract. Mech. 35(1–3), 233–240 (1990)

    Article  Google Scholar 

  30. Lee, J.; Fenves, G.L.: Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 124(8), 892–900 (1998)

    Article  Google Scholar 

  31. Lubliner, J.; Oliver, J.; Oller, S.; Onate, E.: A plastic-damage model for concrete. Int. J. Solids Struct. 25(3), 299–326 (1989)

    Article  Google Scholar 

  32. Wang, W.; Zhang, D.; Lu, F.; Wang, S.-C.; Tang, F.: Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion. Eng. Fail. Anal. 27, 41–51 (2013)

    Article  Google Scholar 

  33. Ruggiero, A.; Bonora, N.; Curiale, G.; De Muro, S.; Iannitti, G.; Marfia, S.; Sacco, E.; Scafati, S.; Testa, G.: Full scale experimental tests and numerical model validation of reinforced concrete slab subjected to direct contact explosion. Int. J. Impact Eng. 132, 103309 (2019)

    Article  Google Scholar 

  34. Sobolev, A.; Radchenko, M.: Use of Johnson–Cook plasticity model for numerical simulations of the SNF shipping cask drop tests. Nuclear Energy Technol. 2(4), 272–276 (2016)

    Article  Google Scholar 

  35. Johnson, G.R.; Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)

    Article  Google Scholar 

  36. Ozturk, G.: Numerical and Experimental Investigation of Perforation of ST-37. Plates by Oblique Impact. Middle East Technical University, Ankara (2010)

    Google Scholar 

  37. Jankowiak, T.; Lodygowski, T.: Identification of parameters of concrete damage plasticity constitutive model. Found. Civ. Environ. Eng. 6(1), 53–69 (2005)

    Google Scholar 

  38. Tasnimi, A.; Rezazadeh, M.: Experimental and numerical study of strengthened single storey brick building under torsional moment. Int. J. Civ. Eng. 10(3), 232–244 (2012)

    Google Scholar 

  39. Eamon, C.D.: Reliability of concrete masonry unit walls subjected to explosive loads. J. Struct. Eng. 133(7), 935–944 (2007)

    Article  Google Scholar 

  40. DoD, U.: Structures to resist the effects of accidental explosions. In: UFC 3-340-02, US DoD, Washington, DC (2008)

  41. Hyde, D.: User’s guide for microcomputer program CONWEP, application of TM5-855-1, fundamentals of protective design for conventional weapons. Instructional Rep. No. SL-88, vol. 1 (1992)

  42. Kingery, C.N., Bulmash, G.: Airblast parameters from TNT spherical air burst and hemispherical surface burst. US Army Armament and Development Center, Ballistic Research Laboratory (1984)

  43. Dewey, J.M.: The shape of the blast wave: studies of the Friedlander equation. In: Proceeding of the 21st International Symposium on Military Aspects of Blast and Shock (MABS), pp. 1–9. Israel (2010)

  44. Mises, Rv: Mechanik der festen Körper im plastisch-deformablen Zustand. Nachr. Ges. Wiss. Gött. Math. Phys. Kl. 1913(4), 582–592 (1913)

    MATH  Google Scholar 

  45. Tarighat, A.; Zehtab, B.: Structural reliability of reinforced concrete beams/columns under simultaneous static loads and steel reinforcement corrosion. Arab. J. Sci. Eng. 41(10), 3945–3958 (2016)

    Article  Google Scholar 

  46. Gilbert, M.; Hobbs, B.; Molyneaux, T.: The performance of unreinforced masonry walls subjected to low-velocity impacts: experiments. Int. J. Impact Eng. 27(3), 231–251 (2002)

    Article  Google Scholar 

  47. Rafsanjani, S.H.; Lourenço, P.B.; Peixinho, N.: Implementation and validation of a strain rate dependent anisotropic continuum model for masonry. Int. J. Mech. Sci. 104, 24–43 (2015)

    Article  Google Scholar 

  48. Silva, L.C.; Lourenço, P.B.; Milani, G.: Rigid block and spring homogenized model (HRBSM) for masonry subjected to impact and blast loading. Int. J. Impact Eng. 109, 14–28 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zehtab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehtab, B., Salehi, H. Finite-Element-Based Monte Carlo Simulation for Sandwich Panel-Retrofitted Unreinforced Masonry Walls Subject to Air Blast. Arab J Sci Eng 45, 3479–3498 (2020). https://doi.org/10.1007/s13369-019-04123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04123-y

Keywords

Navigation