Skip to main content

Advertisement

Log in

Producing Biodiesel from Waste Cooking Oil with Catalytic Membrane Reactor: Process Design and Sensitivity Analysis

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Biodiesel demand increases steadily while using virgin oil as feedstock leads to food–energy competition. Application of conventional biodiesel process using waste cooking oil (WCO) as the alternative feedstock is limited due to the sensitivity of alkali catalysts to free fatty acids (FFA) and the need for glycerol and water washings. This work proposes and conceptually designs a catalytic membrane reactor process to overcome those mentioned limitations. Multiple components in the FFA and WCO were considered in the process design to better demonstrate practical situations and possible technical challenges. Its technical challenges and economic feasibility as well as sensitivities of key process parameters are also evaluated. Results show that the membrane reactor process has a high potential for commercial implementations and economically attractive because it avoids problems associated with the conventional process. Despite being the most sensitive parameter, FFA content of 30 wt% reduces the economic potential by only 5%, demonstrating the robustness of the developed CMR process. Better separation techniques and higher membrane selectivity toward biodiesel still need to be developed in the future to realize and improve the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zabeti, M.; Wan Daud, W.M.A.; Aroua, M.K.: Activity of solid catalysts for biodiesel production: a review. Fuel Process. Technol. 90, 770–777 (2009). https://doi.org/10.1016/j.fuproc.2009.03.010

    Article  Google Scholar 

  2. Keskin, A.; Gürü, M.; Altiparmak, D.; Aydin, K.: Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel. Renew. Energy 33, 553–557 (2008). https://doi.org/10.1016/j.renene.2007.03.025

    Article  Google Scholar 

  3. Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C.: Use of vegetable oils as I.C. engine fuels–A review. Renew. Energy 29, 727–742 (2004). https://doi.org/10.1016/j.renene.2003.09.008

    Article  Google Scholar 

  4. Brennan, L.; Owende, P.: Biofuels from microalgae–A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 557–577 (2010). https://doi.org/10.1016/j.rser.2009.10.009

    Article  Google Scholar 

  5. Nurfitri, I.; Maniam, G.P.; Hindryawati, N.; Yusoff, M.M.; Ganesan, S.: Potential of feedstock and catalysts from waste in biodiesel preparation: A review. Energy Convers. Manag. 74, 395–402 (2013). https://doi.org/10.1016/j.enconman.2013.04.042

    Article  Google Scholar 

  6. Behzadi, S.; Farid, M.M.: Review: examining the use of different feedstock for the production of biodiesel. Asia Pac. J. Chem. Eng. 2, 480–486 (2007). https://doi.org/10.1002/apj.85

    Article  Google Scholar 

  7. Wen, Z.; Yu, X.; Tu, S.-T.; Yan, J.; Dahlquist, E.: Biodiesel production from waste cooking oil catalyzed by TiO2-MgO mixed oxides. Bioresour. Technol. 101, 9570–9576 (2010). https://doi.org/10.1016/j.biortech.2010.07.066

    Article  Google Scholar 

  8. Lam, M.K.; Lee, K.T.; Mohamed, A.R.: Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol. Adv. 28, 500–518 (2010). https://doi.org/10.1016/j.biotechadv.2010.03.002

    Article  Google Scholar 

  9. Rahmanlar, I.; Yücel, S.; Özçimen, D.: The Production of methyl esters from waste frying oil by microwave method. Asia Pac. J. Chem. Eng. 7, 698–704 (2012)

    Article  Google Scholar 

  10. Sharma, Y.C.; Agrawal, S.; Singh, B.; Frómeta, A.E.N.: Synthesis of economically viable biodiesel from waste frying oils (WFO). Can. J. Chem. Eng. 90, 483–488 (2012). https://doi.org/10.1002/cjce.20666

    Article  Google Scholar 

  11. Zhang, Y.; Dubé, M.A.; McLean, D.D.; Kates, M.: Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Technol. 89, 1–16 (2003). https://doi.org/10.1016/S0960-8524(03)00040-3

    Article  Google Scholar 

  12. Farooq, M.; Ramli, A.; Subbarao, D.: Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts. J. Clean. Prod. 59, 131–140 (2013). https://doi.org/10.1016/j.jclepro.2013.06.015

    Article  Google Scholar 

  13. Budžaki, S.; Miljić, G.; Sundaram, S.; Tišma, M.; Hessel, V.: Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors. Appl. Energy. 210, 268–278 (2018)

    Article  Google Scholar 

  14. Saleh, J.; Dubé, M.A.; Tremblay, A.Y.: Separation of glycerol from FAME using ceramic membranes. Fuel Process. Technol. 92, 1305–1310 (2011). https://doi.org/10.1016/j.fuproc.2011.02.005

    Article  Google Scholar 

  15. Gomes, M.C.S.; Pereira, N.C.; de Barros, S.T.D.: Separation of biodiesel and glycerol using ceramic membranes. J. Membr. Sci. 352, 271–276 (2010). https://doi.org/10.1016/j.memsci.2010.02.030

    Article  Google Scholar 

  16. Alves, M.J.; Nascimento, S.M.; Pereira, I.G.; Martins, M.I.; Cardoso, V.L.; Reis, M.: Biodiesel purification using micro and ultrafiltration membranes. Renew. Energy. 58, 15–20 (2013). https://doi.org/10.1016/j.renene.2013.02.035

    Article  Google Scholar 

  17. Atadashi, I.M.; Aroua, M.K.; Abdul Aziz, A.R.; Sulaiman, N.M.N.: Membrane biodiesel production and refining technology: A critical review. Renew. Sustain. Energy Rev. 15, 5051–5062 (2011). https://doi.org/10.1016/j.rser.2011.07.051

    Article  Google Scholar 

  18. Atadashi, I.M.; Aroua, M.K.; Abdul Aziz, A.R.; Sulaiman, N.M.N.: High quality biodiesel obtained through membrane technology. J. Membr. Sci. 421–422, 154–164 (2012). https://doi.org/10.1016/j.memsci.2012.07.006

    Article  Google Scholar 

  19. Cao, P.; Dubé, M.A.; Tremblay, A.Y.: High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor. Biomass Bioenergy 32, 1028–1036 (2008). https://doi.org/10.1016/j.biombioe.2008.01.020

    Article  Google Scholar 

  20. Yaakob, Z.; Mohammad, M.; Alherbawi, M.; Alam, Z.; Sopian, K.: Overview of the production of biodiesel from Waste cooking oil. Renew. Sustain. Energy Rev. 18, 184–193 (2013). https://doi.org/10.1016/j.rser.2012.10.016

    Article  Google Scholar 

  21. Baroutian, S.; Aroua, M.K.; Raman, A.A.A.; Sulaiman, N.M.N.: A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Bioresour. Technol. 102, 1095–1102 (2011). https://doi.org/10.1016/j.biortech.2010.08.076

    Article  Google Scholar 

  22. Hasswa, R.; Dubé, M.A.; Tremblay, A.Y.: Distribution of soap in a membrane reactor in the production of fame from waste cooking oil. Can. J. Chem. Eng. 91, 459–465 (2013). https://doi.org/10.1002/cjce.21686

    Article  Google Scholar 

  23. Alicieo, T.V.R.; Mendes, E.S.; Pereira, N.C.; Lima, O.C.M.: Membrane ultrafiltration of crude soybean oil. Desalination 148, 99–102 (2002). https://doi.org/10.1016/S0011-9164(02)00660-4

    Article  Google Scholar 

  24. Morais, S.; Couto, S.; Martins, A.A.; Mata, T.M.: Designing eco-efficient biodiesel production processes from waste vegetable oils. In: Pierucci, S., Ferraris, G.B. (eds.) Computer Aided Chemical Engineering, pp. 253–258. Elsevier, New York (2010)

    Google Scholar 

  25. Kelloway, A.; Marvin, W.A.; Schmidt, L.D.; Daoutidis, P.: Process design and supply chain optimization of supercritical biodiesel synthesis from waste cooking oils. Chem. Eng. Res. Des. 91, 1456–1466 (2013). https://doi.org/10.1016/j.cherd.2013.02.013

    Article  Google Scholar 

  26. Lee, S.; Posarac, D.; Ellis, N.: Process simulation and economic analysis of biodiesel production processes using fresh and waste vegetable oil and supercritical methanol. Chem. Eng. Res. Des. 89, 2626–2642 (2011). https://doi.org/10.1016/j.cherd.2011.05.011

    Article  Google Scholar 

  27. Canakci, M.; Van Gerpen, J.: Biodiesel production from oils and fats with high free fatty acids. Trans. ASAE 44, 1429–1436 (2001)

    Article  Google Scholar 

  28. Chai, M.; Tu, Q.; Lu, M.; Yang, Y.J.: Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Process. Technol. 125, 106–113 (2014). https://doi.org/10.1016/j.fuproc.2014.03.025

    Article  Google Scholar 

  29. Gerpen, J.V.: Biodiesel processing and production. Fuel Process. Technol. 86, 1097–1107 (2005). https://doi.org/10.1016/j.fuproc.2004.11.005

    Article  Google Scholar 

  30. Abdurakhman, Y.B., Putra, Z.A., Bilad, M.R.: Process simulation and economic analysis of biodiesel production from waste cooking oil with membrane bioreactor. In: Proceeding of the International Conference on Applied Science and Technology 2017., Kedah (2017)

  31. Komintarachat, C.; Chuepeng, S.: Solid Acid Catalyst for Biodiesel Production from Waste Used Cooking Oils. Ind. Eng. Chem. Res. 48, 9350–9353 (2009). https://doi.org/10.1021/ie901175d

    Article  Google Scholar 

  32. Budiman Abdurakhman, Y.; Adi Putra, Z.; Bilad, M.R.; Md Nordin, N.A.H.; Wirzal, M.D.H.: Techno-economic analysis of biodiesel production process from waste cooking oil using catalytic membrane reactor and realistic feed composition. Chem. Eng. Res. Des. 134, 564–574 (2018). https://doi.org/10.1016/j.cherd.2018.04.044

    Article  Google Scholar 

  33. Budiman, Y.A.: Techno-economic evaluation of biodiesel production with membrane reactor (Undergraduate thesis), Universiti Teknologi Petronas (2017)

  34. Suthar, K., Joshipura, M.: A comparative study on predictions of vapor liquid equilibrium of biodiesel systems. Presented at the Proceedings of the 2nd International Conference on Current Trends in Technology (NUiCONE’11) (2011)

  35. Meng, X.; Chen, G.; Wang, Y.: Biodiesel production from waste cooking oil via alkali catalyst and its engine test. Fuel Process. Technol. 89, 851–857 (2008). https://doi.org/10.1016/j.fuproc.2008.02.006

    Article  Google Scholar 

  36. Haigh, K.F.; Vladisavljević, G.T.; Reynolds, J.C.; Nagy, Z.; Saha, B.: Kinetics of the pre-treatment of used cooking oil using Novozyme 435 for biodiesel production. Chem. Eng. Res. Des. 92, 713–719 (2014). https://doi.org/10.1016/j.cherd.2014.01.006

    Article  Google Scholar 

  37. Abdurakhman, Y.B.; Putra, Z.A.; Bilad, M.R.: Aspen HYSYS Simulation for Biodiesel Production from Waste Cooking Oil using Membrane Reactor. In: Annual Applied Science and Engineering Conference. UPI Publication Center, Bandung (2016)

  38. Aspen HYSYS v8. Aspentech (2015)

  39. Javidialesaadi, A.; Raeissi, S.: Biodiesel Production from High Free Fatty Acid-Content Oils: Experimental Investigation of the Pretreatment Step. APCBEE Procedia. 5, 474–478 (2013). https://doi.org/10.1016/j.apcbee.2013.05.080

    Article  Google Scholar 

  40. The PubChem Project, https://pubchem.ncbi.nlm.nih.gov/

  41. ChemicalBook—Chemical Search Engine, http://www.chemicalbook.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Putra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdurakhman, Y.B., Putra, Z.A., Bilad, M.R. et al. Producing Biodiesel from Waste Cooking Oil with Catalytic Membrane Reactor: Process Design and Sensitivity Analysis. Arab J Sci Eng 43, 6261–6269 (2018). https://doi.org/10.1007/s13369-018-3474-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3474-x

Keywords

Navigation