Skip to main content
Log in

Static and Stability Characteristics of Geometrically Imperfect FGM Plates Resting on Pasternak Elastic Foundation with Microstructural Defect

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The static and stability characteristics of geometrically imperfect functionally graded material (FGM) plate with a microstructural defect (porosity) resting on Pasternak elastic foundation are investigated. The formulations are based on hybrid higher-order shear and normal deformation theory. A new mathematical expression is presented to accomplish the effective material properties of the material with porosity inclusion. A generic function is employed to model various modes of geometric imperfection. The equations of motion are derived using variational principle. Convergence and comparison studies with reported results ensure the reliability and accuracy of the present solution. Influence of geometric imperfection, porosity, foundation parameters, and boundary constraints on the static and stability behavior of FGM plate is examined. The results reflect that the geometric imperfection and porosity have a significant influence on the structural response of FGM plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koizumi, M.: FGM activities in Japan. Compos. Part B Eng. 28(1–2), 1–4 (1997)

    Article  Google Scholar 

  2. Gupta, A.; Talha, M.: Recent development in modeling and analysis of functionally graded materials and structures. Prog. Aerosp. Sci. 79, 1–14 (2015)

    Article  Google Scholar 

  3. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47(1–3), 663–684 (2000)

    Article  MATH  Google Scholar 

  4. Ferreira, A.J.M.: Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Compos. Struct. 69, 449–457 (2005)

    Article  Google Scholar 

  5. Shariat, B.A.S.; Eslami, M.R.: Buckling of thick functionally graded plates under mechanical and thermal loads. Compos. Struct. 78(3), 433–439 (2007)

    Article  Google Scholar 

  6. Mohammadi, M.; et al.: Levy solution for buckling analysis of functionally graded rectangular plates. Appl. Compos. Mater. 17(2), 81–93 (2010)

    Article  MathSciNet  Google Scholar 

  7. Saidi, A.R.; et al.: Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory. Compos. Struct. 89(1), 110–119 (2009)

    Article  Google Scholar 

  8. Talha, M.; Singh, B.N.: Thermo-mechanical buckling analysis of finite element modeled functionally graded ceramic-metal plates. Int. J. Appl. Mech. 3(4), 867–880 (2011)

    Article  Google Scholar 

  9. Talha, M.; Singh, B.N.: Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Appl. Math. Model. 34(12), 3991–4011 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gupta, A.; et al.: Vibration characteristics of functionally graded material plate with various boundary constraints using higher order shear deformation theory. Compos. Part B Eng. 94, 64–74 (2016)

    Article  Google Scholar 

  11. Gupta, A.; et al.: Natural frequency of functionally graded plates resting on elastic foundation using finite element method. Procedia Technol. 23, 163–170 (2016)

    Article  Google Scholar 

  12. Elishakoff, I.; et al.: Three-dimensional analysis of an all-round clamped plate made of functionally graded materials. Acta Mech. 180(1–4), 21–36 (2005)

    Article  MATH  Google Scholar 

  13. Nguyen, T.-K.: A higher-order hyperbolic shear deformation plate model for analysis of functionally graded materials. Int. J. Mech. Mater. Des. 11(2), 203–219 (2015)

    Article  Google Scholar 

  14. Pendhari, S.S.; et al.: Static solutions for functionally graded simply supported plates. Int. J. Mech. Mater. Des. 8(1), 51–69 (2012)

    Article  Google Scholar 

  15. Baltacioglu, A.K.; et al.: Nonlinear static response of laminated composite plates by discrete singular convolution method. Compos. Struct. 93(1), 153–161 (2010)

    Article  Google Scholar 

  16. Lam, K.Y.; et al.: Canonical exact solutions for Levy-plates on two-parameter foundation using Green’s functions. Eng. Struct. 22(4), 364–378 (2000)

    Article  Google Scholar 

  17. Gilhooley, D.F.; et al.: Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions. Compos. Struct. 80(4), 539–552 (2007)

    Article  Google Scholar 

  18. Liew, K.M.; et al.: Differential quadrature method for Mindlin plates on Winkler foundations. Int. J. Mech. Sci. 38(4), 405–421 (1996)

    Article  MATH  Google Scholar 

  19. Zhang, D.G.; Zhou, H.M.: Mechanical and thermal post-buckling analysis of FGM rectangular plates with various supported boundaries resting on nonlinear elastic foundations. Thin-Walled Struct. 89, 142–151 (2015)

    Article  Google Scholar 

  20. Sheng, G.G.; Wang, X.: Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium. J. Reinf. Plast. Compos. 27(2), 117–134 (2008)

    Article  Google Scholar 

  21. Civalek, Ö.: Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches. Compos. Part B Eng. 50, 171–179 (2013)

    Article  Google Scholar 

  22. Civalek, Ö.; et al.: Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges. Adv. Eng. Softw. 41(4), 557–560 (2010)

    Article  MATH  Google Scholar 

  23. Luo, Y.F.; Teng, J.G.: Stability analysis of shells of revolution on nonlinear elastic foundations. Comput. Struct. 69(4), 499–511 (1998)

    Article  MATH  Google Scholar 

  24. Hui, D.; Leissa, A.W.: Effects of geometric imperfections on vibrations of biaxially compressed rectangular flat plates. J. Appl. Mech. 50(4a), 750 (1983)

    Article  MATH  Google Scholar 

  25. Hui, D.: Effects of geometric imperfections on frequency–load interaction of biaxially compressed antisymmetric angle ply rectangular plates. J. Appl. Mech. 52(March), 155–162 (1985)

    Article  MATH  Google Scholar 

  26. Yang, J.; Huang, X.-L.: Nonlinear transient response of functionally graded plates with general imperfections in thermal environments. Comput. Methods Appl. Mech. Eng. 196(25–28), 2619–2630 (2007)

    Article  MATH  Google Scholar 

  27. Librescu, L.; Souza, M.A.: Post-buckling of geometrically imperfect shear-deformable flat panels under combined thermal and compressive edge loadings. J. Appl. Mech. 60(2), 526–533 (1993)

    Article  MATH  Google Scholar 

  28. Girish, J.; Ramachandra, L.S.: Thermomechanical postbuckling analysis of symmetric and antisymmetric composite plates with imperfections. Compos. Struct. 67(4), 453–460 (2005)

    Article  Google Scholar 

  29. Lui, T.; Lam, S.S.: Finite strip analysis of laminated plates with general initial imperfection under end shortening. Eng. Struct. 23(6), 673–686 (2001)

    Article  Google Scholar 

  30. Behravan Rad, A.; Shariyat, M.: Thermo-magneto-elasticity analysis of variable thickness annular FGM plates with asymmetric shear and normal loads and non-uniform elastic foundations. Arch. Civ. Mech. Eng. 16(3), 448–466 (2016)

    Article  Google Scholar 

  31. Zhu, J.; et al.: Fabrication of ZrO\(_2\)–NiCr functionally graded material by powder metallurgy. Mater. Chem. Phys. 68(1–3), 130–135 (2001)

    Article  Google Scholar 

  32. Ebrahimi, F.; Mokhtari, M.: Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method. J. Braz. Soc. Mech. Sci. Eng. 37(4), 1435–1444 (2015)

    Article  Google Scholar 

  33. Ait Atmane, H.; et al.: Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. Int. J. Mech. Mater. Des. 13(1), 1–14 (2015)

    Google Scholar 

  34. Wattanasakulpong, N.; Ungbhakorn, V.: Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp. Sci. Technol. 32(1), 111–120 (2014)

    Article  Google Scholar 

  35. Magnucka-Blandzi, E.: Non-Linear analysis of dynamic stability of metal foam circular plate. J. Theor. Appl. Mech. 48(1), 207–217 (2010)

    Google Scholar 

  36. Yahia, S.A.; et al.: Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct. Eng. Mech. 53(6), 1143–1165 (2015)

    Article  Google Scholar 

  37. Barati, M.R.; et al.: Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation. Int. J. Mech. Sci. 117, 309–320 (2016)

    Article  Google Scholar 

  38. Ebrahimi, F.; et al.: Free vibration analysis of smart porous plates subjected to various physical fields considering neutral surface position. Arab. J. Sci. Eng. 42(5), 1865–1881 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gupta, A.; Talha, M.: Influence of porosity on the flexural and vibration response of gradient plate using nonpolynomial higher-order shear and normal deformation theory. Int J Mech Mater Des. (2017). https://doi.org/10.1007/s10999-017-9369-2

    Google Scholar 

  40. Gupta, A.; Talha, M.: Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment. Int. J. Struct. Stab. Dyn. 18(1), 1–31 (2018)

    Article  MathSciNet  Google Scholar 

  41. Gupta, A.; Talha, M.: An assessment of a non-polynomial based higher order shear and normal deformation theory for vibration response of gradient plates with initial geometric imperfections. Compos. Part B 107, 141–161 (2016)

    Article  Google Scholar 

  42. Grover, N.; et al.: Analytical and finite element modeling of laminated composite and sandwich plates: an assessment of a new shear deformation theory for free vibration response. Int. J. Mech. Sci. 67, 89–99 (2013)

    Article  Google Scholar 

  43. Kitipornchai, S.; et al.: Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections. Int. J. Solids Struct. 41(9–10), 2235–2257 (2004)

    Article  MATH  Google Scholar 

  44. Thai, H.-T.; Choi, D.-H.: Analytical solutions of refined plate theory for bending, buckling and vibration analyses of thick plates. Appl. Math. Model. 37(18), 8310–8323 (2013)

    Article  MathSciNet  Google Scholar 

  45. Reddy, J.N.: A refined nonlinear theory of plates with transverse shear deformation. Int. J. Solids Struct. 20(9), 881–896 (1984)

    Article  MATH  Google Scholar 

  46. Thai, H.-T.; Kim, S.-E.: Closed-form solution for buckling analysis of thick functionally graded plates on elastic foundation. Int. J. Mech. Sci. 75, 34–44 (2013)

    Article  Google Scholar 

  47. Malekzadeh, P.; et al.: Buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates on elastic foundations. Meccanica 47(2), 321–333 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Talha, M. Static and Stability Characteristics of Geometrically Imperfect FGM Plates Resting on Pasternak Elastic Foundation with Microstructural Defect. Arab J Sci Eng 43, 4931–4947 (2018). https://doi.org/10.1007/s13369-018-3240-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3240-0

Keywords

Navigation